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The 5/8 theorem for finite groups

Let us randomly choose two elements a, b of a finite group G .

What does the probability P(ab = ba) tell us about the group G?

If the probability exceeds 62.5%, then the group must be abelian.
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The 5/8 theorem for finite groups

This result has been known for a long time, with the first formal proof
showing up in a paper by Erdös and Turan.
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The 5/8 theorem for finite groups

To show that the 5/8 theorem holds, we will first explore some examples
that will guarantee that we cannot improve the constant 5

8 .
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The 5/8 theorem for finite groups

First, let’s consider the center of a finite group G and ask how big the
center can be relative to the group G .

If G is abelian, then the center Z is the whole group, i.e. Z = G .
Let’s assume that G is not abelian. By Lagrange’s theorem we know
that |G||Z | is an integer. Since G is non-abelian clearly |G||Z | > 1.
Since we want to find an upper bound for |Z ||G| , this is the same as finding
a lower bound for |G |/|Z | under the assumption that G is non-abelian.
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The 5/8 theorem for finite groups

What about |G||Z | = 2?

The center of a group is always a normal subgroup, which means that
G/Z is a group of size |G||Z | . This means that if |G||Z | = 2, then
G/Z = Z/2, which means that G is generated by Z and one element.
But this element commutes with everything in the center, which means
that G is abelian, which is a contradiction. Therefore |G||Z | > 2.

Timo Rohner (UJ) The 5/8 theorem April 19, 2021 7 / 37



The 5/8 theorem for finite groups

What about |G||Z | = 2?
The center of a group is always a normal subgroup, which means that
G/Z is a group of size |G||Z | . This means that if |G||Z | = 2, then
G/Z = Z/2, which means that G is generated by Z and one element.

But this element commutes with everything in the center, which means
that G is abelian, which is a contradiction. Therefore |G||Z | > 2.

Timo Rohner (UJ) The 5/8 theorem April 19, 2021 7 / 37



The 5/8 theorem for finite groups

What about |G||Z | = 2?
The center of a group is always a normal subgroup, which means that
G/Z is a group of size |G||Z | . This means that if |G||Z | = 2, then
G/Z = Z/2, which means that G is generated by Z and one element.
But this element commutes with everything in the center, which means
that G is abelian, which is a contradiction. Therefore |G||Z | > 2.

Timo Rohner (UJ) The 5/8 theorem April 19, 2021 7 / 37



The 5/8 theorem for finite groups

What about |G||Z | = 3?

The same argument as before applies to this case, since the only group
of order 3 is the group Z/3, which is generated by one element.
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The 5/8 theorem for finite groups

What about |G||Z | = 4?

The only groups of order 4 are Z/4 and the Klein four-group Z/2× Z/2.
Since both those groups are abelian we may wrongly conclude that
|G|
|Z | > 4. But nothing guarantees that the commutativity of
G/Z ' Z/2× Z/2 is preserved when passing to G , which is generated
by Z and Z/2× Z/2.

Timo Rohner (UJ) The 5/8 theorem April 19, 2021 9 / 37



The 5/8 theorem for finite groups

What about |G||Z | = 4?
The only groups of order 4 are Z/4 and the Klein four-group Z/2× Z/2.

Since both those groups are abelian we may wrongly conclude that
|G|
|Z | > 4. But nothing guarantees that the commutativity of
G/Z ' Z/2× Z/2 is preserved when passing to G , which is generated
by Z and Z/2× Z/2.

Timo Rohner (UJ) The 5/8 theorem April 19, 2021 9 / 37



The 5/8 theorem for finite groups

What about |G||Z | = 4?
The only groups of order 4 are Z/4 and the Klein four-group Z/2× Z/2.
Since both those groups are abelian we may wrongly conclude that
|G|
|Z | > 4. But nothing guarantees that the commutativity of
G/Z ' Z/2× Z/2 is preserved when passing to G , which is generated
by Z and Z/2× Z/2.

Timo Rohner (UJ) The 5/8 theorem April 19, 2021 9 / 37



The 5/8 theorem for finite groups

So we are left with the task of determining whether we can find a
non-abelian group G such that G/Z ' Z/2× Z/2. G/Z is abelian, but
elements from G don’t have to commute despite commuting after being
mapped to G/Z .

Is there such a group?
Yes, namely the 8-element quaternion group.
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The 5/8 theorem for finite groups

Q = {±1,±i ,±j ,±k},

where
i2 = j2 = k2 = −1,
ij = k,
jk = i ,
ki = j ,
ji = −k,
kj = −i ,
ik = −j .

Z = {−1, 1}, Q/Z = Z/2× Z/2.
Q/Z = {1, i , j , k} and all elements commute.
Thus Q is a nonabelian finite group with |Q|/4 elements in the center.

Timo Rohner (UJ) The 5/8 theorem April 19, 2021 11 / 37



The 5/8 theorem for finite groups

Q = {±1,±i ,±j ,±k},

where
i2 = j2 = k2 = −1,
ij = k,
jk = i ,
ki = j ,
ji = −k,
kj = −i ,
ik = −j .

Z = {−1, 1}, Q/Z = Z/2× Z/2.

Q/Z = {1, i , j , k} and all elements commute.
Thus Q is a nonabelian finite group with |Q|/4 elements in the center.

Timo Rohner (UJ) The 5/8 theorem April 19, 2021 11 / 37



The 5/8 theorem for finite groups

Q = {±1,±i ,±j ,±k},

where
i2 = j2 = k2 = −1,
ij = k,
jk = i ,
ki = j ,
ji = −k,
kj = −i ,
ik = −j .

Z = {−1, 1}, Q/Z = Z/2× Z/2.
Q/Z = {1, i , j , k} and all elements commute.

Thus Q is a nonabelian finite group with |Q|/4 elements in the center.

Timo Rohner (UJ) The 5/8 theorem April 19, 2021 11 / 37



The 5/8 theorem for finite groups

Q = {±1,±i ,±j ,±k},

where
i2 = j2 = k2 = −1,
ij = k,
jk = i ,
ki = j ,
ji = −k,
kj = −i ,
ik = −j .

Z = {−1, 1}, Q/Z = Z/2× Z/2.
Q/Z = {1, i , j , k} and all elements commute.
Thus Q is a nonabelian finite group with |Q|/4 elements in the center.

Timo Rohner (UJ) The 5/8 theorem April 19, 2021 11 / 37



The 5/8 theorem for finite groups

So what is the probability that two randomly chosen elements of Q
commute?

Let a and b be randomly chosen elements from Q.
P(ab = ba) = P(a ∈ Z ) + P(a 6∈ Z ) · P(ab = ba|a 6∈ Z ).
Clearly P(a ∈ Z ) = 1/4, P(a 6∈ Z ) = 3/4.
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The 5/8 theorem for finite groups

What is P(ab = ba|a 6∈ Z )?

Recall the definition of Q:

i2 = j2 = k2 = −1,
ij = k,
jk = i ,
ki = j ,
ji = −k,
kj = −i ,
ik = −j .

Let a ∈ Q \ Z . What choices are there for b ∈ Q such that ab = ba?
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The 5/8 theorem for finite groups

What is P(ab = ba|a 6∈ Z )?
Let a ∈ Q \ Z . What choices are there for b ∈ Q such that ab = ba?

If a = ±i , then b ∈ {1,−1, i ,−i}.
If a = ±j , then b ∈ {1,−1, j ,−j}.
If a = ±k, then b ∈ {1,−1, k,−k}.
Thus we have P(ab = ba|a 6∈ Z ) = 1/2.
This means that P(ab = ba) = 1/4 + 3/4 ∗ 1/2 = 5/8.

Timo Rohner (UJ) The 5/8 theorem April 19, 2021 14 / 37
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The 5/8 theorem for finite groups

Is this bound sharp?

Suppose G is non-abelian and we choose a random element g .
As we saw earlier, if g ∈ Z , then g commutes with all elements of G and
we already established that |Z |/|G | ≤ 1/4.
What if g 6∈ Z? g commutes exactly with elements belonging to the
centralizer C(g).
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The 5/8 theorem for finite groups

How big can C(g) be?

C(g) is a subgroup of G and by Langrange’s theorem |G |/|C(g)| is an
integer.
Clearly |G |/|C(g)| > 1, since we assumed that g 6∈ Z . Thus the first
choice is |G |/|C(g)| = 2, which is the same as |C(g)|/|G | = 1/2.
But we already saw earlier that for Q we have |C(i)|/|Q| = 1/2, thus we
know that there exists a group for which |C(g)|/|G | = 1/2 for all g 6∈ Z .
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The 5/8 theorem for finite groups

Thus we have

P(ab = ba) = P(a ∈ Z ) + P(a 6∈ Z ) · P(b ∈ C(a) | a 6∈ Z )
= P(a ∈ Z ) + (1− P(a ∈ Z )) · P(b ∈ C(a) | a 6∈ Z )

≤ P(a ∈ Z ) + 1− P(a ∈ Z )
2

= 1 + P(a ∈ Z )
2

≤ 1 + 1/4
2 = 5

8 .
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The 5/8 theorem for finite groups

This means the quaternion group is as commutative as possible without
being abelian.

Moreover, one can show that the following are equivalent
• The probability that two elements commute is 5/8.
• The inner automorphism group of G is of order 4.
• The inner automorphism group of G is the Klein four group.

The probability 5/8 can only be attained if
• |Z |/|G | = 1/4,
• |C(g)|/|G | = 1/2 for all g 6∈ Z .
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Haar Measure

So far we have only discussed finite groups. Is there a way to generalize
this statement to non-finite groups?

Yes.
Moreover: Is there a way that we can replicate the arguments given
earlier involving computing the probability for elements to commute for
non-finite groups?
The answer is yes and involves the Haar measure.
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Haar Measure

Preliminaries
(G , ·) is a locally compact Hausdorff topological group.

We have a Borel algebra generated by all open subsets of G .
We define the left and right translates of a subset S of G by an element
g of G :
• left translate:

gS = {g · s : s ∈ S},
• right translate:

Sg = {s · g : s ∈ S}.

If S is a Borel set, then so are gS and Sg .
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Haar Measure

Haar’s theorem
Let (G , ·) be a locally compact Hausdorff topological group.

There exists a countably additive, nontrivial measure µ on Borel subsets
of G such that
• µ is left-translation-invariant, i.e.
µ(gS) = µ(S) for all g ∈ G and Borel sets S ⊆ G ,
• µ is finite on compact sets, i.e. µ(K ) <∞ for all compact K ⊆ G ,
• µ is outer regular on Borel sets S ⊆ G , i.e.
µ(S) = inf{µ(U) : S ⊆ U, U open},
• µ is inner regular on open sets U ⊆ G , i.e.
µ(U) = sup{µ(K ) : K ⊆ U, K compact}.

Moreover, this Haar measure is unique up to a positive multiplicative
constant.

Timo Rohner (UJ) The 5/8 theorem April 19, 2021 21 / 37
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Haar Measure

There are various ways of showing the existence of a Haar measure
satisfying the properties given in Haar’s theorem.

The traditional proof given by Haar and Weil involves constructing the
Haar measure using compact subsets.
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Haar Measure

For 2 subsets S,T ⊆ G we define [T : S] to be the smallest number of
left translates of S that fully covers T . This means that [T : S] is a
non-negative integer or infinity.

For disjoint comapct sets K , L and an open set U that is a sufficiently
small neighborhood of the identity of G we have
[K : U] + [L : U] = [K ∪ L : U], but [−,U] is not additive on compact
sets.
We now fix a compact set A with nonempty interior. Such a set exists
since G is locally compact.
Let K be a compact set. We define

µA(K ) = lim
U

[K : U]
[A : U] ,

where the limit is over directed set of open neighborhoods of the identity
eventually contained in any given neighborhood.
Does there exist a directed set for which this limit exists? Yes, thanks to
Tychonoff’s theorem.
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Haar Measure

µA is additive on disjoint compact subsets of G and thus a regular
content, i.e. a measure except that it’s not necessarily countably
additive and only finitely additive.

Any regular content can be extended into a measure. First extend µA to
open sets by inner regularity, then to all sets by outer regularity and
finally restricting to Borel sets.
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Haar Measure

For compact topological groups we can show the existence of a Haar
measure without making use of any measure theory.

Instead we can use convex sets and the Krein-Milman theorem.
We denote by G − Ban the category of Banach representations of G .
Objects are Banach spaces X over R with a continuous norm preserving
action G × X → X , i.e. ‖gx‖ = ‖x‖ ∀g ∈ G , x ∈ X .
Maps in G − Ban are short maps that happen to be G-equivariant.
Short maps are maps between metric spaces f : X → Y such that
d(f (a), f (b)) ≤ d ′(a, b), where d is the metric of Y and d ′ the metric of
X .
(Being G-equivariant means that f (gx) = gf (x))
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Haar Measure

C(G), the vector space of continuous real-valued functionals with
compact support on G , is one such banach representation and so is R if
we take gz = z for each z ∈ R and g ∈ G .

In fact, C(G) is a locally convex tvs with the locally convex structure
being given by the seminorms ρK (f ) = sup

x∈K
|f (x)|, where K are compact

subsets of G .
A Radon measure on G can be fully given by a continuous linear
functional ∫

G
: C(G)→ R.

Such a Radon measure yields a measure µ on the σ-algebra of Borel sets
in the normal measure theoretic sense, i.e.

µ(B) = sup{
∫

G
f : supp(f ) = K ⊂ B, ρK (f ) = 1}.
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Haar Measure

We say that a left Haar integral on G is a nonzero linear functional
∫

G
such that

∫
G f ≥ 0 when f ≥ 0 and

∫
G f g =

∫
G f for any f ∈ C(G) and

g ∈ G where f g : G → R sends x to f (gx).

We then say that a Haar measure on G is a nonzero Radon measure µ
such that µ(gB) = µ(B) for all g ∈ G and Borel sets B.
R embedds into C(G) as constant functions. This gives us an exact
sequence

0→ R→ C(G)→ C(G)/R→ 0.
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Haar Measure

If we show that R is an injective object in G − Ban then we are done.

An object Q is injective if for a monomorphism f : X → Y any
g : X → Q can be extended to h : Y → Q.
Injectivity of R means that 1R lifts along the inclusion 0→ R→ C(G)
and thus we have a retract

∫
G : C(G)→ R for 0→ R→ C(G) in

G − Ban.
This means that

∫
G has norm 1 and positivity follows.
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Haar Measure

So why is R injective?

Take X → Y an injection of Banach representations of G and
f : X → R a map of Banach representations of G .
By Hahn-Banach there exists g : Y → R in the category of Banach
spaces and short maps that extends f , but we aren’t guaranteed
G-invariance.
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Haar Measure

Now let’s consider subsets of all extensions of f to Y . Let S be the
collection of G-invariant compact convex subsets of this set.

S contains the convex hull of Gg , where g is some chosen extension of f
to Y , so S is nonempty.
By compactness and Zorn’s lemma, we can find a minimal element of S
in this collection, where we impose the order that A ≤ B whenever
A ⊂ B. We call this minimal element H.
H is clearly a singleton. If H contains a point which is not extremal then
it contains the convex hull of the orbit of that point, which would be a
proper G-invariant compact convex subset of H (Krein-Milman theorem).
This means that H is a singleton and its unique element is a G-invariant
functional extending f .
Thus R is indeed injective.
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The 5/8 theorem for compact Hausdorff topological groups

Let G be a compact Hausdorff topological group.

G has a left Haar measure. Or put differently: We have a Borel measure
µ with µ(U) > 0 for all nonempty open subsets U of G and
µ(x · E ) = µ(E ) for all Borel sets E ⊂ G and all x ∈ G .
By imposing µ(G) = 1 we guarantee uniqueness of the Haar measure.
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The 5/8 theorem for compact Hausdorff topological groups

We impose the product measure µ× µ on the product space G × G and
we define C = {(x , y) ∈ G × G : xy = yx}.

It is obvious that C = f −1(1), where f : G × G → G is continuous and
defined as f (x , y) = xyx−1y−1.
This means that C is closed and thus measurable.
We use the notation P(G) for the probability that two elements of G
commute.
Since we can consider µ× µ as a probability measure we have
P(G) = (µ× µ)(C).
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The 5/8 theorem for compact Hausdorff topological groups

We will now show the 5/8 theorem for G a compact Hausdorff
topological group:

5/8 theorem for compact Hausdorff topological groups
Suppose G is non-abliean. Then P(G) ≤ 5/8.
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The 5/8 theorem for compact Hausdorff topological groups

P(G) = (µ× µ)(C) =
∫

G×G

1Cd(µ× µ).

By Fubini’s theorem we have

(µ× µ)(C) =
∫
G

∫
G

1C (x , y)dµ(y)dµ(x).

We have ∫
G

1C (x , y)dµ(y) = µ(Cx ),

where Cx is the centralizer of x in G .
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The 5/8 theorem for compact Hausdorff topological groups

As shown earlier, |G |/|Z | ≥ 4, since for 1, 2, 3 the only possiblities are
that G is generated by Z and one additional element of G .

Since G is the disjoint union of cosets of Z , it holds that µ(Z ) ≤ 1/4.
Measurability of Z follows from closedness of Z .
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The 5/8 theorem for compact Hausdorff topological groups

If x ∈ Z , then Cx = G and therefore µ(Cx ) = 1.

On the other hand, if x 6∈ Z , then Cx must have an index of at least 2 in
G and therefore µ(Cx ) ≤ 1/2.
This means that we have

P(G) =
∫
G

µ(Cx )dµ(x)

=
∫
Z

µ(Cx )dµ(x) +
∫

G\Z

µ(Cx )dµ(x)

≤ µ(Z ) + µ(G \ Z ) · 1/2 ≤ 5/8.
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