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Streszczenie

Tematem pracy jest wprowadzenie do podstawowej teorii i metod uzywanych w elip-
tycznych réownaniach rézniczkowych czastkowych. W pierwszym rozdziale dokonano
krotkiego przegladu rownan rézniczkowych czastkowych oraz ich klasyfikacji. Rozdziat
drugi zostal poswiecony funkcjom harmonicznym oraz ich wtasno$ciom. W trzecim
rozdziale podano wyprowadzenia podstawowych rozwigzan dla rownan Laplace’a i
Poissona. W ostatnim rozdziale zostaly zawarte dwa gtéwne twierdzenia dotyczace ist-
nienia rozwigzan eliptycznych réwnan rozniczkowych czastkowych, mianowicie metoda
Perrona oraz istnienie stabych rozwigzan przy uzyciu twierdzenia Laxa-Milgrama.

Abstract

This thesis covers the basic theory and methods used in the study of elliptic partial
differential equations. The first chapter gives a quick overview of partial differential
equations and their classification. The second chapter revolves around harmonic func-
tions and their properties. The third chapter contains a full development of the fun-
damental solution to the Laplace equation and solution to the Poisson equation. The
fourth chapter covers two major existence results for elliptic PDE, namely the Perron
method and the existence of weak solutions using the Lax-Milgram theorem.

Stowa klucze
Roéwnania roézniczkowe czastkowe, funkcje harmoniczne, réwnanie Poissona, funkcja

Greena, metoda Perrona, przestrzenie Sobolewa, twierdzenie Laxa-Milgrama, stabe
rozwigzania;

Keywords

Partial differential equations, harmonic functions, Poisson equation, Green function,
Perron method, Sobolev spaces, Lax-Milgram theorem, weak solutions;
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1 Introduction

This chapter contains a short introduction to partial differential equations, their
classification, and introduces the Laplace and the Poisson equation alongside two basic
boundary conditions. For a more in-depth overview of partial differential equations,
the reader may find the book Partial Differential Equations [2] helpful.

1.1 Second order partial differential equations

1.1.1 Definition

Definition 1.1. Let €2 be an open subset of R™. A second order partial differential
equation is of the form

F(D*u, Du,u,z) =0, (1.1)

where v : Q — R is an unknown function, D?u the Hessian matrix of u, and Du the
gradient of u.

Definition 1.2. A second order PDE is

i) linear if equation (1.1) takes the following form:

8!Ei5[‘j

> (o) Y ) T+ el = (),

,j=1

ii) semilinear if the second order terms of equation (1.1) are linear:

= 0?u ,
> aij(x) 5 — + F'(Du,u,z) = f(z),
i,j=1 I

where F’ is a first order PDE that is not linear; otherwise the PDE would simply
be linear.

ili) quasilinear if the coefficients a;; only depend on Du, u and x:

= 0%u ,
Z a;;(Du, u, ) + F'(Du,u,z) = f(z).
i1 Gmixj

If all a;; are independent of Du and u then the PDE is not quasilinear. It is
either linear or semilinear, depending on the linearity of F”.

iv) non-linear if it is none of the above.
Definition 1.3. u: 2 — R is a classical solution to the PDE (1.1) if
i) ue C?*Q),

ii) equation (1.1) holds for all z € Q.



1.1.2 Classification

For a linear or semi-linear PDE we can rewrite equation (1.1) as follows:

- 0*u

F(D*u, Du,u,z) = Z a;;(z)

ij=1

F'(D = 0.
al’il’j + ( U,U,I’)

We define a matrix A(z) = (a; (m))i’jzlu
solutions, the matrix D?u is symmetric. Without loss of generality, we can assume that
A is symmetric. In fact, suppose that A is not symmetric and let A = %(A + AT). By
symmetry of D*u, we deduce that A - D?u = A - D?u and thus, we can replace the
non-symmetric matrix A with the symmetric matrix A. Since A is real symmetric, it
is also diagonalizable, allowing for the classification of any semi-linear or linear PDE
using only the eigenvalues of the corresponding matrix A.

., and thanks to the C? regularity of classical

Definition 1.4. A linear or semi-linear second order PDE is
i) elliptic if the eigenvalues of A are all either strictly positive or strictly negative,
ii) parabolic if at least one eigenvalue of A is zero,

iii) hyperbolic if all eigenvalues of A are non-zero, and exactly n — 1
are negative, leaving 1 eigenvalue to be positive or conversely n — 1 positive,
leaving 1 eigenvalue to be negative.

1.2 Basic equations

The Laplace equation is one of the most fundamental equations in the study of
elliptic PDE.

no a9
Au = @:0.

i=1 i

An extension of the Laplace equation is the Poisson equation,
Au = o,

where ¢ is some function.

1.3 Boundary conditions

The study of PDE is not limited to studying problems of varying linearity. A lot
of time and energy goes into studying problems with various boundary conditions.
One such boundary condition of interest to us, is the Dirichlet boundary condition.
We will restrict ourselves to the study of problems with such boundary conditions.
Nonetheless, the notions, methods and tools developed in this work are not limited to
the study of elliptic PDE with Dirichlet boundary conditions.



u(z) = f(x) on 0L, (Dirichlet boundary condition)
Ou
v

where %(m) is the normal derivative of u, f some function, and 2 C R™.

(x) = f(z) on 09, (von Neumann boundary condition)

2 Harmonic functions

The focus of this chapter are harmonic functions and their properties, which will
be useful in subsequent chapters, wherein we will solve the Laplace equation, develop
the corresponding fundamental solution, develop Green’s function to solve the Poisson
equation for various boundary conditions and provide a sufficiently general existence
result for the Laplace equation. This chapter loosely follows a series of lectures on
elliptic equations, held by Professor Vicentiu D. Radulescu in the fall of 2018 at AGH
University of Science and Technology [7]. The lectures focused on providing a general
overview and most theorems were given without full proofs. Thus, this chapter seeks
to complement and extend some of the material covered in the lectures. The author
wishes to acknowledge the important contribution of the lectures on the following
material.

Remark 2.1. We will make frequent use of the following notation.

i) B,(x) denotes a ball of radius r, centered at x, i.e.

By(z) ={y e R" | [z —y| <7},
ii) w, denotes the measure of the boundary of a unit ball in the euclidian space R",

i.e. the measure of 0B;(0),

iii) [ do, denotes the surface integral over 9,
o9

iv) For a set Q C R", we denote the measure of Q by ||, where unless stated
otherwise the measure used is the Lebesgue measure.

v) © C R™ is an open bounded subset of R™, unless stated otherwise.

Definition 2.2. A function v € C*(Q2) is harmonic if Au = 0.

2.1 Mean value properties

Definition 2.3. Given a function u € C(2), we say that

i) u satisfies the first mean value property in Q if

1
u(z) = 9B.()] / u(y)do, for any B,.(x) C €,
0B (x)



ii) u satisfies the second mean value property in 2 if

1
u(z) = B / u(y)dy for any B,(z) C Q.

By (x)

Remark 2.4. The first and second mean value property are equivalent. This follows
from the definition of the mean value properties. We take the first mean value property
and rewrite it as follows:

u(z)r" = / u(y)doy,.

OBy (x)

=

After integrating over r, we can simplify by directly integrating over B,.(z) instead
of integrating over 0B, (x) and subsequently integrating over [0, r]. This follows from
Fubini’s theorem A.5.

T

" 1 1
u(x)% = / u(y)do,dt = o / u(y)dy.
0 8B (x) B ()

The measure of B, () can be written as |B,(z)| = ;" Therefore,

n

1
U(I):wnr” / U(y)dy:m / u(y)dy.

B, (m) B, (-'17)

Theorem 2.5. A function u € C*(Q) satisfies the mean value properties in ) if and
only if u is harmonic in Q.

Proof. Step 1. Suppose u is harmonic and let
0.(r) : {r € Ryy | B.(z) C Q} = R,
for any x € Q) be defined as follows:

1
%(T):M / U(y)day-

OBr(x)

We introduce a change of variable y = x + rw, which yields

ou(r) = — / u(z + rw)do,.

Wn
9B1(0)

By taking the derivative of (o, with respect to r, we get

1
o, (r) = o / Vu(z + rw) - wdo,,. (2.1)
naB1(0)



A simple change of variable w = *-* allows (2.1) to be transformed into a boundary
integral. The Gauss divergence theorem A.9 allows for the boundary integral to be
transformed into an integral over B, (z). Namely,

1 S 1 .
A= [ (V) @), = — [ div(Vu)dy
0B, (x) Br(x)

1
:wnr”—l / Au(y)dy = 0.
Br(x)

Therefore, o, is constant. By the Lebesgue differentiation theorem A.11, we have

. . 1
ea(r) = Jim ooft) = lim s [ ulydo, = ua),

t—0t t—o
OBy (z)

and thus u satisfies the mean value property.

Step 2. We show that if u satisfies the mean value property, then u is harmonic.
We assume by contradiction that w is not harmonic in €2 and that the mean value
property holds. If u is not harmonic, we have Au # 0. Therefore, there exists a point
z and r > 0, such that Au > 0 (or equivalently Au < 0) in B,(x) C Q. The reasoning
used in step 1 yields the following contradiction:

0= () = —= / Au(y)dy > 0.
By (x)
0

Theorem 2.6 (Strong maximum principle). For a function u € C*(Q)NC(Q) that is

harmonic in € we have
max % = max 1.
Q a0

Furthermore, if Q0 is connected and there ezists xo € 2 such that u(xg) = max u, then
Q

u 18 constant in ).

Proof. Step 1. Suppose that €2 is connected and that there exists g € €2, such that
u(zg) = max u =: M, i.e. u attains its maximum over  in o € €.
Q

We define a set V= {x € Q | u(z) = M}. V is relatively closed in Q because
V = u'[{M}], i.e. V is the preimage of the closed set {M}, making its preimage
a closed set as well. On the other hand, since €2 is open and V non-empty, for any
v € V we can find r > 0 such that B,(v) C €. A simple application of the mean value
property immediately shows that u = M in B,(v).

M =ulv) = |Br<v>|B(/v | uly)dy < |Br<v>|B(/v | Mdy < M.

Therefore, we have B,.(v) C V, making V relatively open in Q. This implies that
V = Q, since by hypothesis Q is connected, which means that only € and () can be



relatively clopen in €). Since xzq € V, V is non-empty and therefore we have V = Q.
This proves the second claim of the theorem. Additionally, if €2 is connected the second
claim of the theorem directly implies the first claim.

Step 2. What remains to be shown is that for {2 not connected the first claim of
the theorem still holds. If the maximum of v is not attained in €2, then the first claim
of the theorem holds. If the maximum of u is attained in €2, there exists a point x € €2,
such that u(x) = max u =: M. We define the set V' as in step 1. Additionally we define

C' as the intersection of all in Q relatively clopen sets containing z. Let V := V N C.
Since R™ is locally connected, € is locally connected as well. We know that in a locally
connected space the intersection of clopen sets containing x is equal to the connected
component of €2 containing x, i.e. the maximally connected subset of € containing x
with inclusion as the criteria for the maximum. Therefore C'is connected and the same
reasoning we used in step 1, applied to V and C, holds and shows that V = C.

By lemma A.15, we know that 9V C 9. Since the only clopen sets in R” are the
empty set and R we that there exists some point y € 92 N V. Since u\; = M, we
conclude that u(y) = M and thus u attains its maximum on the boundary of Q. [

2.2 Superharmonic and subharmonic functions
Definition 2.7. A function u € C?(Q) is

i) subharmonic in Q if —Au <0 in ©,

ii) superharmonic in © if —Au > 0 in Q.

Theorem 2.8 (Mean value inequality). Given a function u € C*(Q), a point x € Q
and r > 0 such that B,(x) C Q the following claims hold.

i) If —Au > 0 in B.(z), then for any 0 <t < r we have

1
u(x)>w / u(y)do,.

OB¢(x)

ii) If —Au < 0 in B.(z), then for any 0 <t < r we have

u(x)<m / u(y)do,,.

OBt(x)

Proof. We start out by proving the first part of the theorem. The method used in
theorem 2.5 can be used to show that for any s € [0, ¢], we have that if —Awu > 0, then

1

0 > Sn—l

ou 0
Au(z)dx = / g(x + sw)do,, = 55 / u(z + sw)doy,.
(

Ba(z) 8B, (0) 8B, (0)



Integrating with respect to s from 0 to ¢ and a subsequent trivial rearrangement yields

m / u(z + tw)do, < u(x).

8B (0)
To show the claim for —Au < 0 we simply switch the inequalities around. O
Lemma 2.9. Under the assumption of theorem 2.8 the following claims hold.

i) If x, is a minimum point of u in Q, then —Au(zy) < 0.

i) If x, is a mazimum point of u in Q, then —Au(zg) > 0.

Proof. We prove the first claim of the lemma. The second claim follows from the same
line of reasoning.

Suppose xg is a minimum point of u in Q with —A(xzg) > 0. Since Awu is continuous in
(2, there exists a neighbourhood of xy, which we denote by Bj(z¢), in which —Awu > 0.
We make use of theorem 2.8, which states that

1
U(l’o) > m / U(y)dO'y,

0By (o)

for any 0 < ¢’ < §. This contradicts the assumption that z( is a local minimum of w.
]

Theorem 2.10 (Weak maximum principle). For a function u € C*(Q) N C(Q),
we have that

i) —Au >0 in Q = minu > rralg)nu,
Q

i) —Au <0 in Q = maxu < maxu.
Q o9
Proof. We will only show the first claim, since the second claim can be shown using
the same argument. Suppose —Au > 0. We define us := u — §|x|? for any § > 0. The
function wug is strictly superharmonic, i.e. —Aus = —Au+ 206n > 0. Suppose that z is
a minimum of us in . By lemma 2.9, we have —Aug(z) < 0, which is a contradiction.
Therefore, innu5 > I%Siznu(;. Letting 0 — 0, we arrive at the desired conclusion. O]

Remark 2.11. We say that a function u is smooth if it is of C'*° regularity.

Theorem 2.12 (Removable Discontinuity). For a function u and some R > 0 such
that u € C(OBgr(0)) N C%*(Bgr(0)\{0}) is harmonic in Br(0){0} and satisfies the fol-
lowing condition,

lim 42— ifn=2,

|z|—0 o8zl

lim 22 =0 ifn> 3,

27
o]0 127"

we can redefine u, such that u smooth and harmonic in all of Bgr(0).



Proof. Case 1. n = 2.
Suppose that u is continuous in Br(0)\{0}, lim; 0
a solution of the problem

(@)

log[z] —

= 0, and suppose that v is

Av =0 in Bg(0),
v=u on 0Bg(0).

The existence of such a function v € C*°(Bg(0)) is guaranteed by theorem 3.7. All we
need to show is that «w = v in Br(0)\{0}. Let

w:=v—uin Br(0)\{0} and M, := 81r31a(x)\w\ for any r > 0, such that r < R.
(0

For any x € 0B,(0), we have

T

log & 1
8 R <w(z) < M, o8

log 5 —

|

—M,
log &

)=

Since log || and w(z) are harmonic functions this holds not only on 90B,(0) but also
in B,.(0) thanks to the weak maximum principle 2.10. Thus,

for any « € Br(0)\B,(0). We can establish a boundary for M,. Namely, we get
M, = max ]v —u| < max |v\ + max |u| < max |v\ + max |u]
9B,(0 0By ( 0B,(0) dBR(0 0B,(0)

< maX |u| + max |u|

OBRr OB, (

Therefore, for any fixed z such that 0 < |z| < R, we have

]

< R
)] < s e+ o

with any r such that 0 < r < |z|. If r — 0 we conclude that |w(z)| — 0. This follows

from the assumption that v = o(log|z|), which implies that érgla%ﬂ@ — 0. Thus,
we arrive at the desired result, i.e. w = 0 in Bg(0)\{0}.

Case 2. n > 3.
We use the same method as for the case n = 2 to establish the following boundary:

2—n

T
lw(z)| < Mrﬂ—_n,

for any © € Bg(0)\B,(0). Using the same boundary as before for M,, we show that
|lw(z)| — 0 as r — 0. O



2.3 Additional properties of harmonic functions

Theorem 2.13 (C* regularity of harmonic functions). If u € C(Q) satisfies the mean
value property in Q, then uw € C®(Q).

Proof. Let 1) be the standard mollifier and let u := n. *u in Q, where n.(z) := In(%)
and Q. := {x € Q| dist(z,09) > €}. We know that n € C°(R") and u, € C*®(£2,).
For more details and an in-depth proof of this claim, the reader may consult [8]. Our
aim is to show that u.(z) = u(x). We will do so by making use of the mean-value

property.

u(r) = /ne(ﬂf —yu(y)dy = L / n(x — y)ﬂ(y)dy (2:2)

en €
Q Be(z)
= i | n(z)< / u(y)do )dr = l / (f)& ”_1u(x)d?"
en € Y n €e’'n
0 0B, (z) 0
~ule) [ nlo)dy = (o)
B.(0)

This concludes the proof, since u = u, in €2, which means that u € C*(€),) for every
e > 0. L]

Theorem 2.14 (Pointwise estimates for derivatives). Let u be a harmonic function in
Q. Then for every B,(x) C Q and a multi-indezx o, the following pointwise estimates
for the derivatives of u hold.

o Clal
[D%u(@)] < gl s, @, (2.3)
where Co = -, C; = % fori=1,2 ...

Proof. We prove this theorem via induction.

For i = 0 this is trivial, since equation (2.3) is equivalent to the mean value property
that holds for all harmonic functions.

For i = 1 we simply recall that for any j = 1...n u,, is harmonic due to u being
harmonic. Therefore, u,; fulfills the mean value property and thus we have

@)= | [ w25 [ uwan

B, (@) OB, () (2.4)

< 2 ull =8, »@)-

where the second equality follows a trivial application of the Gauss divergence theorem
A.9. For any y € 0B, 2(x), we have B, 3(x) C B,(x) C Q and therefore

2™n

WpT™

lu(y)| < ull21 (B, (), (2.5)



from the previously established result for i = 0. Inserting equation (2.5) into equa-
tion (2.4), namely replacing ||u|| =, completes the proof for the case i = 1.

Suppose that ¢ > 2 and that the estimates of the theorem hold for each multi-index
B of order smaller than 7. We fix B,(z) € Q and take a multi-index « of order i. We can
express D*u via DPu, namely for some j € {1,...,n}, we have that D*u = (D"u),,.
Since DPu is harmonic, we can use the same reasoning as above, which yields

o ni
|D%u(z)| < 7HDﬁUHL°°(8BT/i(x))- (2.6)

For each y € B,/;(x) we have B,;_1)(y) C B,(x) C Q and hence we may use the
estimates of the theorem as follows:

(2n+1 (5 — 1))~ lp

wn(%r)n—f—i—l

D u(y)] < [l 13, - (2.7)

O
Theorem 2.15 (Liouville). A harmonic and bounded function u : R™ — R is constant.

Proof. We take r > 0 and fix + € R”. Then we apply theorem 2.14 on B,(z).
Hence we get

1
[Du()] < = llulleis, @) < g el <

as r — 00. Thus, u is constant. O

Theorem 2.16 (Harnack’s inequality). For every connected open set V. CC (2,
there exists a constant C' that only depends on V' such that for any non-negative har-
monic function u in € the following holds

sup u < C'inf u.
174 |4

Proof. Let r := 1dist(V, 9Q). We choose z,y € V such that |z — y| < 7. This implies

that .
u(x) :m / u(z)dz > o / u(z)dz

Br(y)

2”]B I / z)dz = ——u(y). (2.8)

Br(y)

Using this inequality twice we find that u(y) < u(z) < 2"u(y) for all z,y € V such
that |z — y| < r. Since the closure of V' is compact there exists a finite family of balls
{B;}Y,, all of radius 5, that cover V. On top of that by hypothesis V is connected,
which allows us to create not only a finite covering of V' but do so with a chain of
balls, meaning that the family of balls {B;}Y, is ordered such that B; N B;_; # 0.
This completes the proof, since for any x,y € V, we also have x € By, y € B, for

k,j € {1,..., N}, which means that

u(x) > (%)lj_kmuw) > 2n(]1v+1)u(y)-

10



3 Green’s function

In this section, we will develop the fundamental solution of the Laplace equation
and solve the Poisson equation over R™ and for any ball. This section is based on the
material covered during Professor Radulescu’s lectures |7]. Additionally, this chapter
is based on results that can be found in |2].

3.1 Fundamental solution of the Laplace equation

The function

= log || if n =2,
M) = {L# ifn>3 (3-1)
wn(n—2) |z|n—2 =

defined over R™\{0}, is the fundamental solution of the Laplace equation.

Definition 3.1. We define the Newtonian potential v of f € LP(Q) for 1 < p < oo as
follows.

v(z) = / I — )/ (y)dy.

Rn

Finding the fundamental solution of the Laplace equation is a relatively trivial
matter. We start out by trying to find a function w : R — R such that u(z) = w(|z|)

n 1
is a solution to the Laplace equation, where |z| = (Z xf)Q For any ¢ = 1,...,n, we

i=1
have
0 1 ;
[z 1 2w, = i
ox;  2|x| ||
which gives us
ou , X 0%u x? 1 x?
- _Z d Z " 7 / __ ) .
o =l and g = (e s () (1 — 1)

Thus we have Au = 0 if and only if
2 n xf o n— _
A= () 3 s + 0! (al) (2 — Yonih) = o) + bl () =0,
i=1 =1

" _ . . .
If w' # 0, we have “; = =" and by integration we have w'(|z|) = —%, where a is a
’ w || |zt

constant. Therefore, we find that the function w(|x|) takes the following form.

—b 4 if n > 3,

| |™

w(|z]) = {blog(lx|)+c if n =2

where b, ¢ are constants.

Theorem 3.2 (Fundamental solution of the Poisson equation). Let u be the Newtonian
potential of a function f € C*(R"™). Then

11



i) ue C*R"),
i) —Au= f in R™
Proof. Step 1. Clearly,

therefore,

U(x—l—he}i) — u(x) /F<y)(f(l“+h€i —z) — [l —y))d%

where h # 0 and e; = (0,...,1,0,...,0) where 1 is in the i-th slot. Of course,

f(z+hei —y) — flx—y)
h

and thus for i = 1,2, ..., n,

— fz,(x — y) uniformly on R" as h — 0,

g (z) = / D(y) fur(z — y)dy.

Rn

Likewise for i = 1,2, ..., n,

R

and thus, u € C*(R™), since the right-hand side of the last identity is continuous.
Step 2. Fix € > 0. Due to the singularity of the fundamental solution at the origin,
we have to be careful in our calculation. Namely, we first consider the splitting

Au(z) = / P(y)Auf (e — y)dy + / F(y)Adf(z — y)dy
BL(0) R\ B, (0) (3.2)
=: [814—[52.

Then, polar coordinates implies

11| < C|ID2f| poe ey | T ()| dy < Ce"~"72) < Ce?. (3.3)

Integration by parts implies

o / D(y)A, f(z — y)dy

R"\ B, (0)
o1
= [ orw-psa-pdy+ [ T - is,
R"\B.(0) 9B:(0)
= JI 4+ J%, (3.4)

12



where v denotes the inward pointing unit normal along 0B.(0). Now,

[ JZ] < 1Dl oy

I'(y)|do, < Ce. (3.5)
Another integration by parts and using the harmonic property of I' yields

re= [ arse-vay- [ 5w -y,
R”\B:(0) or 0Bc(0) (3.6)
== / 5, W (@ —y)do,.
9B (0)
It is clear, that DI'(y) = — = (with y # 0) and v = =% = —% on 9B.(0). Thus,
%(y) =v-DI'(y) = = on 0B.(0).
Therefore,
Re-— [ se-w,
o0 (3.7)

)
:_|B€1<O)’ / flx — y)do, — —f(),
)

9B (0

as € — 0. Hence, by combining the equations (3.3), (3.4), (3.5), (3.6), (3.7) and sending
e — 0 in equation (3.2), we obtain the desired result —Au(z) = f(x).
For n = 2, we change the estimates for I! and .J%¢ as follows:

|I'e| < Ce*lloge| and |J?| < Ce|logel.

With those changes in place, the proof remains valid for n = 2. O

3.2 Representation of solutions

Let Q C R™ be an open and bounded domain with C* boundary. A set has a C*
boundary if for each zo € 012, there exists r > 0 and a function v € C®" such that

an BT(‘%O) = {l’ S Br(ﬂUo) ’ Tp > 7(*%173727 "'7‘%.’”,71)}7

where if needed we reorient the coordinate axes. Our goal is to find a representation
of the solution of the Poisson equation

—Au = fin Q,

subject to the boundary condition

u = g on Of).

13



Fix x € Q, let ¢ > 0 such that B.(x) C Q. We use Green’s formulas A.7 on
V. = Q\B.(z) to show that

/ u(y)AT(y — z) — T(y — 2)Au(y)dy

Ve

3.8)
or ou (
= [ )5, - 2) - T - 2) 5 ),
V.
Since AT'(z —y) = 0 for z # y and
u
— )= < 1 —
[ T 05 wde| < maxr] = o),
OBe ()
we can show (as was done in theorem 3.2) that
or 1
wy)—(y —x)do, = —F— u(y)do, — u(x), 3.9
| g oo = g [ s, a9
0B.(x)
as € — 0.
Using equation (3.8) and equation (3.9), we show that
ou or
ule) = [ (M= 050 0) = )5, (v~ 0)do,
00 (3.10)
- /F(y —a)Au(y)dy

The equation (3.10) holds for all z € Q and all u € C?(Q). We know that u satisfies the
Poisson equation and the boundary values of v on 02 are known. The only unknown
term in (3.10) is g—ﬁ on 0. To address this we introduce a function ¢,(y) for any fixed
x € (1, such that ¢, solves the boundary-value problem

A¢, =0 in €2,
¢ =T(y—=x) on N
We apply Green’s formula once more to obtain
0, ou
- [ etwdutay = [ ) GEw - 0.0) 5 Wi,
Q o0

(3.11)

~ [ 52w -1 - )5 oy,

oN

Definition 3.3 (Green’s function for Q). We introduce the Green function for €.

G(r,y) =Ty —x) — ¢(y) for zyeQa#y.

14



Using this definition allows us to get rid of any terms that include %. We add
equation (3.11) to equation (3.10) and arrive at

G
ute) == [up) G ), — [ Gl suty)ay,
G) Q
where %% (z,y) is the outer normal derivative of G with respect to y.

To summarize, if we have a function u € C?({2) that is a solution of the boundary-
value problem

—Au=f in €2,
u=gq on 052,
for two given continuous functions f and g, then the following holds:
oG
u(@) == [ 9ly) 5 (x,y)doy + [ Glz,y)f(y)dy. (3.12)
o9 Q

Remark 3.4. For simple shapes 2 we can compute the corrector function ¢,.

3.3 Green’s function for the unit ball

We now set out to explicitly compute the corrector function ¢, for the unit ball.
For any x € R"\{0}, we define & := 7. We choose a fixed 2 € B,(0) and we introduce
the following problem

Ay =0 in B, (0),
¢ =T'(y — ) on 0B4(0),

where G(z,y) = I'(y — z) — ¢.(y) is Green’s function.

Suppose that n > 3. y — ['(y—2) is harmonic for y # & and thus y — |z|* "' (y—12)
is harmonic for y # 7 as well. We can therefore say that ¢.(y) := I'(|z|(y — Z)) is
harmonic in B;(0). Furthermore, for y € 0B,(0) and z # 0, we have

[2’ly = 7 = |oP (gl = 27—+ ) = el =2y o+ 1 = o -yl

Therefore, |z — y|*™ = (|z| |y — Z|)>~" and we end up with

¢:(y) =T(y — x) for y € 9B4(0),

as required.

If n = 2, we can apply the same procedure and we end up with the same result.
This allows Green’s function to be defined universally, independent of whether n > 3
or n = 2.

Gz, y) =Ty —x) = T(|el(y — 7)), (3.13)
for x,y € B1(0).

15



Suppose the function u solves the boundary-value problem
Au=0 in By(0),
u=g¢g on 0B;(0),

Taking a look at the representation formula equation (3.12) reveals that

- [ o) w0,

(3.14)
8B (0)
According to equation (3.13),
G or Il (|z|(y — ))
ayl 3 i ayz
By simple calculation, we get
8F(_@_j;%—m g Lzl =) _ 1 gila]* —
T T o=yl dy: o o=y
for any y € 9B;(0). Therefore,
oG " 0G
ov — Ay;
= _i;iyz((yz_xl) — yilz? + ;) (3.15)

11—

wy |7 — Y|

The combination of equation (3.15) and

equation (3.13) gives us the representation
formula

o —J;—y|” Oy.

8B, (0)
We can extend the representation formula to any ball of arbitrary radius using dilation.
Definition 3.5 (Poisson’s formula).

do

wp R |x_y’n v

u(x) _ R? — |I|2 / g(y)

0BRr(0)
where 2 € Br(0).

Definition 3.6 (Poisson’s kernel).

R*—|z|> 1
K =
(z.9) wp R |z =yl

where x € Bg(0), y € 0Bg(0).
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All of the above culminates in the following result.

Theorem 3.7 (Poisson’s formula for balls). Let g be a continuous function on 0Bg(0).
We define the function u using the Poisson formula 3.5. Then

i) u € C*(Bg(0)),
i) Au =0 in Bg(0),

ii)  lim  u(x) = g(zg) for each x5 € OBR(0).
BR(O)BI—>$0

4 Existence theory

This chapter contains two major existence results and provides an introduction to
sobolev spaces, the notion of weak solutions and elliptic operators.

4.1 Perron method

In this section we will establish an existence and uniqueness result for classical so-
lutions to Dirichlet problems on general domains. The approach in this section loosely
follows [3]. Apart from following the established approach to prove the perron method,
the author developed the content of this chapter independently.

The perron method relies on the existence of solutions on ball domains. While
we will only consider the case of the Laplacian operator, the perron method can be
extended to more general elliptic operators. We consider the following problem

—Au=0 in Q,
(4.1)

u=¢  on 0,

where () is a bounded domain in R" and ¢ is a continuous function on 0€2. Addi-
tionally we require that {2 satisfies the exterior sphere condition, which we will discuss
in more detail later.

If Q is an open ball, then the solutions of equation (4.1) are given by the Poisson
formula and the Green function for ball domains. The purpose of the Perron method
is to prove the existence of a unique solution if €2 is not a ball domain.

We start out by providing an alternative definition of subharmonic and super-
harmonic continuous functions based on the maximum principle. This is in contrast
to defining subharmonic and superharmonic function using the the more traditional
definition that involves the laplacian.

Definition 4.1. Let 2 be a bounded domain in R" and v be a continuous function
in 2. Then v is subharmonic (respectively superharmonic) in 2 if for any ball B C 2
and any harmonic function w € C'(B),

< < Subharmonic case
U_won(?B:> =" B ( ) )
v>w v>w (Superharmonic case)

17



Remark 4.2. If v € C?%() is subharmonic in € as defined in definition 4.1, then it is
also subharmonic in the traditional sense given in definition 2.7.

Lemma 4.3. Let u,v € C(Q), where Q is a bounded open subset of R™. If u is sub-
harmonic in €, v is superharmonic in Q and u < v on OS2, then u < v in €.

Proof. Step 1. We can assume, without loss of generality, that 2 is connected. To
justify this assumption, let us assume that €2 is not connected. We denote the family
of connected components of 2 by C. Thus, every V € C is a maximally connected
subset of €2, and C forms a partition of €.

We know that v < v on 0f). Using lemma A.15, we know that 0V C 0f) for any
V € C. Therefore, u < v on OV for any V € C'. Since V is connected, if the lemma
holds for connected sets, we can conclude that v < v in V. Since this is true for any
V € C and C forms a partition of €2, we have u < v in 2. Therefore, we can show that
the lemma holds for a connected bounded domain 2, without loss of generality.

Step 2. We show that the lemma holds if {2 is connected. Let M := mgx(u—v) and

D :={z € Qu(z)—v(z) = M} C Q. D is relatively clopen in €. Since 2 is connected,
D can only be equal to the empty set or to 2. To show that D is indeed relatively clopen
in €2 we remark that the continuity of u — v immediately proves relative closedness. To
show that D is open, we take any point 2o € D and 0 < r < dist(xg, 92). We define
two problems.

(1) {Au =0 in B,,(:co),) 2) {Av =0 in B.(x),

u=u on 0B.(zg v=v on 0B,.(zy).

The existence of a solution for each of these problems is a consequence of the Poisson
formula for Q = B,.(zq). We denote these solutions by @ and v. Moreover, we have
u < uand v < wvin B,(xg). Therefore,

u—0v>u—wvin B.(z9).

Thus,

With u—v < M on 0B,(zy), by the maximum principle, we have t—v < M in B, ().
In particular,
M > (a—0)(xg) > (u—v)(xo) = M.

Hence, (u — v)(x9) = M, which implies that & — v has an interior maximum at z.
By the strong maximum principle, @ — o = M in B,.(xo) and thus B,(xy) C D for all
0 < r < dist(xzg, 992). We conclude that D = () or D = Q. In other words either u — v
attains its maximum exclusively on 0€) or u—uv is constant in 2. If u—v is constant in {2
we can directly extend the hypothesis u < v on 02 to €. If u — v attains its maximum
exclusively on 0f2 we conclude in a similar manner that mgxu —v < r%%xu —v<0. O

Lemma 4.4 (Subharmonic property of a harmonic lifting). Let v € C(S2) be a sub-
harmonic function in Q and B CC Q a ball. Let w = v in Q\B and Aw = 0 in B.
Then w is a subharmonic in Q and v < w in Q.
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Proof. The existence of such a function w is guaranteed by the Poisson formula for
) = B. w is smooth in B and continuous in . We also have v < w in Q by the
definition of subharmonic functions . We take any B’ CC Q and harmonic function
u € C(B') with w < won 0B'. By v < w on 0B, we have v < u on dB'. v is
subharmonic and « is harmonic in B’ with v < u on 0B’. By lemma 4.3, v < u in
B’. Therefore, w < w in B\B’. Both w and u are harmonic in BN B’ and w < u on
J(B N B'). By the maximum principle, we have w < u in BN B’. Thus, w < u in B’
We conclude that, by definition, w is subharmonic in 2. O

We will attempt to solve equation (4.1). We define

u,(x) = sup{v(x) | v € C() is subharmonic in Q, v < ¢ on 0N}. (4.2)

Our goal is to show that the function w,, is a solution of the Dirichlet problem (4.1).
We show that u,, as defined in equation (4.2), is harmonic in Q. Let

S ={v e () | vis subharmonic in Q,v < ¢ on 9N}. (4.3)

For any x € 2,
u,(x) = sup{v(x)jv € S}.

Step 1. We show that u, is well defined. Let m = Halsizm’o and M = maxe. We

clearly have m € S and therefore S is non-empty. On the other hand, M is a constant
function and clearly harmonic in Q with ¢ < M on 0f). By lemma 4.3, for any v € S,

v< MinQ,

and thus u, is well defined and we have u, < M in 2.

Step 2. We will show that S is closed for the maximum of a finite number of
functions. Let vy, vo,...,vp € S be any finite number of elements of S and define
v := max{vy, Vg, ..., U }. v is subharmonic in €2 and therefore v € S.

Step 3. We prove that u, is harmonic in any ball B, (zo) C Q. By definition of u,,
the existence of a sequence of functions v; € S such that

lim v; (o) = uy(xo).
1—00
is guaranteed. We may now replace v; in the above by any v; € S with 0; > v; since
vi(wo) < 03(w0) < up(wo).
If necessary, we can replace v; by max{m,v;} € S. Therefore, we can assume that
m < wv; <y, in (4.4)

For a fixed B,(xo) and every v;, we define w; according to the definition of a harmonic
lifting in lemma 4.4. Then w; = v; in Q\ B, (o) and

{Awl =0in BT(I‘())

w; = v; on IB,(xg).
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By lemma 4.4, w; € S and v; < w; in . Furthermore, w; is harmonic in B, (z() and
satisfies

lim w;(zo) = up(xp) and m<w; <wu,in Q@ foranyi=1,2,..

1—00
Since any bounded sequence of continuous functions on a compact set converges uni-
formly towards a continuous function, we know that there exists a continuous function
w towards which a subsequence of {w;} converges uniformly. We will replace {w;}
with this convergent subsequence for the sake of convenience. Thanks to the mean
value property being satisfied by all functions w; because they are all harmonic, we

can extend this to the function w. Let y € B,.(xg). Then for any s small enough such
that By(y) C B,(z9) we have

wlo) = s [ w)don,

Wh, Snfl
0Bs(y)

Thanks to uniform continuity on 0B;(y) of w; we can take the limit on both sides and
move the limit on the right-hand side inside the integral, which yields

wly) = s [ o

Wh, Sn—l
9Bs(y)

Thus, w is harmonic in B, (z) and we have shown that
w < u, in B (zg) and  w(zg) = uy(zo).

We now claim that u, = w in B, (z). To show this, take any € B,(x() and proceed as
before, by replacing = with xy. By definition of u,, there exists a sequence of {v;} C S

such that

lim 0;(Z) = u,(Z).

1—00
As before, we can replace, if necessary, v; by max{v;, w;} € S. So we may also assume
that

wlgﬁlguw in €).

For a fixed B,(z¢) and each v;, we let w; be the harmonic lifting in lemma 4.4. Then
w; € S and v; < w; in Q. Moreover, w; is harmonic in B,.(z() and satisfies

zlg?o w;(Z) = up(®) and m < max{v;, w;} < w; < u, in €,
forany ¢ = 1,2, .... Using the same reasoning as before, there exists a harmonic function
w in B, (zp) with a maximum attained at z. Then, by the strong maximum principle
applied to w — w in B,/(zg) for any ' < r, we deduce that w — w is constant and
thus is equal to zero. This implies that w = @ in B,(xg). Furthermore, we have
w(z) = w(T) = u,(Z). Hence, w = u, in B,(x() since Z can be any element of B, (zo).
This proves that u, is harmonic in B, ().
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Lemma 4.5. Let ¢ be a continuous function on 02 and u, be the function defined in

lemma 4.3. For some xy € L), suppose w,, € C(2) is a subhmarnoic function in
such that
W) =0, wi(2) <O for any = € O\ {ao},
then .
lim u,(x) = ¢(z0).

T—To

Proof. As before, consider the set

S ={v e () | vis subharmonic in ,v < ¢ on 9N }.
To simplify the notation, we just write w = w,, and set M = r%%x|go|. Let € > 0 be
arbitrary, and by continuity of ¢ at x, there exists a 0 > 0 such that
lo(z) — @(x0)| < € for any x € 0Q N Bs(xo).

We then choose K suitably large such that —Kw(z) > 2M for any x € 0Q\Bs(xo).
Thus,
lp(z) — p(20)] < € — Kw for z € 9Q.

Since p(zg) — e + Kw(z) is a subharmonic function in  with p(z9) —e+ Kw < ¢ on
09, we have that ¢(z9) — e + Kw € S. The definition of u, then implies that

o(xg) —e + KW < u, in Q.

However, ¢(xg) + ¢ — Kw is super-harmonic in Q with p(z) + & — Kw > ¢ on 0f.
Thus, for any v € S, we obtain from lemma 4.3

v(z) < @(xg) + € — Kw(x) for z € Q. (4.5)

Again, by the definition of u,,

us(x) < p(xg) + € — Kw(x) for z € Q. (4.6)
Hence, equation (4.5) and equation (4.6) imply

lup(x) — (z0)| < € — Kw(z) for x € €,
and since w is continuous with w(z) — w(zy) = 0 as z — o, we arrive at

lim sup|u, () — ¢(xo)| < €.

T—T0

To finish the proof we let ¢ — 0. n

Remark 4.6. The existence of a function w,, € C(f2) as required by lemma 4.5 is
not guaranteed for any domain 2. However, it is guaranteed for any domain €2 that
satisfies the exterior sphere condition at zy € 02, meaning there exists yo and r > 0,
such that QN B,(yo) = 0 and QN B,(yo) = {x0}. In our case, we can construct wy,
using I

wao () =Tz = o) = I(o — wo), (4.7)

for any = € Q, where I is the fundamental solution of the Laplace equation.
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To summarize, we have proven the following theorem.

Theorem 4.7 (Perron method existence theorem). Let €2 be a bounded domain in
R™ satisfying the exterior sphere condition at every boundary point. Then, for any
p € C(09), the Dirichlet problem (4.1) admits a solution u € C*(2) N C(£).

4.2 Second order elliptic operators

Second order elliptic operators can come in divergence form or non-divergence
form. The former lend themselves naturally to the energy method and we can establish
the notion of weak solutions for them, while the latter are better approached using

maximum principles.
Let © be an bounded open subset of R", A = A(x) = (aij(x>)ij:1...n anxn

matrix of functions, b = b(z) = (bi(x)),_, =~ be a n-tuple of functions and ¢ = ¢(x)
any function.

Definition 4.8. A differential operator L of second order is said to be in divergence
form if

Lu = div(A(x)Vu) + b(z) - Vu + ¢(x)u, (4.8)

or in non-divergence form if it can be written as

= 0u
Lu:= a;i(xr)=—— + b(x) - Vu + c(z)u. 4.9
Z (@) g +0(@) - Vutcla) (4.9)
Remark 4.9. So far we haven’t put any restrictions on a;;, b; and c. It is quite trivial
to realize that the above definition in the case of the divergence form only makes sense
if we impose C" regularity on all functions (a;;(z)) in the matrix A(z). Doing so also
allows us to switch between the two forms. By the definition of div, we have

div(A(z)Vu) = 3 O(A(z)Vu)g

= o 4.10
S P () g,
_i,jzl N O — Ox; /i '

Replacing div(A(z) - Vu) with equation (4.10) in equation (4.8) gives us the non-
divergence form

RN 0*u "< Jag(z)
bu= D @) g ¥ (X5, b)), Vut clo)

Conversely, by C(Q2) regularity of a;;(x) we can transform equation (4.9) from non-
divergence form to divergence form. Let

~ da;;(x
i Z a; .
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which gives us

ij:l 83:11']
u 0aij (.73) =
— wzl ag;(x 8x e < . o, )Z Vu+b(z) - Vu + c(z)u

— div(A(z)Vu) + b(z)Vu + c(z)u.

Definition 4.10. A linear second degree differential operator is uniformly elliptic if
there exist o, 8 > 0 such that a.e. z € Q and for all £ € R", the following holds.

al¢l < Z a;;(x)&&; < BIEI.

2,7=1

4.3 Sobolev spaces

So far, we focused on finding solutions of C? regularity. In this section we will
introduce the notion of weak derivatives, weak solutions and sobolev spaces, which
will lay the foundation for the existence result for weak solutions in a subsequent
section. For more details on Sobolev spaces, the reader may consult [6], chapter 1 and
[2], which were heavily used to develop the material presented in this section.

Definition 4.11 (Weak derivative). Given u,v € Li () and a multi-index a. We
say that v is the a-th weak partial derivative of u if

/uDangdx = (—1)"‘/v¢dm,

Q Q

for all test functions ¢ € C°(£2). We denote the weak derivative by D%u = wv.

Lemma 4.12 (Uniqueness of weak derivative). A weak a-th partial derivative of u is
uniquely defined up to a set of measure zero, provided that it exists.

Proof. Suppose that v, v are weak derivatives of u for the same multi-index «. Then we
have [(v—0)¢dx =0 for all ¢ € C*(2) and therefore v = ¥ almost everywhere. For

Q
a detailed development of the final step in this proof, i.e. concluding that (v — ) =0
a.e. based on the fact that the above integral is 0 for all test functions ¢ you may
consult [8]. You can find a full development of this result there. O

Definition 4.13. We define the sobolev space W*?(Q) for k non-negative integer and
1 < p < oo as the set of locally summable functions u : €2 — R such that for every
multi-index |a| < k, the weak partial derivative D%u exists and belongs to LP(1).
Additionally we define the norm as

(%M{ |D°‘u]pda:)l/p, (1<p<o0)

> ess sup |Dul. (p = o0)
lor| <k

||u||W’“vP(Q) =
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Remark 4.14. We consider two functions u and v belonging to W*P?() to be identical
if they are identical almost everywhere.

Theorem 4.15 (Elementary properties of weak derivative). Suppose u,v € WkP(Q)
and |a| < k. Then

i) D € WEIelbr(Q) and DP(D*u) = D*(DPu) = D"Pu for all multindezes «, 3
such that |o| + |5] < k.

i) For each \, u € R we have Au+pv € WFP(Q) and D*(Mu+pv) = ADu+ uDPv.
i) If O is an open subset of Q, then u € WHP(O).
w) if p € C®(Q), then pu € W*P(Q) and the Leibniz formula holds, i.e.

D%(pu) = Z <||g:)D5g0Da_5u,
BLa

el _ !
(Iﬁ!) 1B al = 18])!

and B is a multi-index and § < « is defined as

B =Py Pn) < (q,..,00p) =& 5 < a,

foralli=1,...n.

where

Remark 4.16. For a full proof of theorem 4.15, the reader may consult [2|, page 263.

Definition 4.17 (Convergence). Given a sequence of functions {u,}>>, C WkP(Q)
and a function u € W*P(Q), we say that

i) up = win WHP(Q)if lim |Ju, — ullyeeo) =0,
n—oo

i) u, — uin WEP(Q) if u, — uin W*P(V) for any V cC Q.
Definition 4.18. We define W5”(Q) as the closure of C°(Q) in W*P(Q).

Theorem 4.19 (Sobolev spaces as function spaces). For every k = 1,2,... and
1 < p < oo the Sobolev space W*P(Q) is a Banach space.

Proof. Step 1. We show that |[ullyrs) is a norm. It is easy to see that
| Awllwep) = [All|w]|wes ) holds and by the previous remark concerning equivalency
of functions in sobolev spaces we have that ||u|/yxs) = 0 if and only if v = 0 almost
everywhere. Now suppose u,v € WH5P(Q). Minkowski’s inequality A.3 gives us

1/p
lut vlhwsaie = (32 1D+ D0}, )

laf<k

1/p
< (3 (10" ulsnier + 10 0llve)’)

| <k
1/p 1/p
< (X IDulte) "+ (X 1D )
| <k || <k

= lullwrr@) + vlwre @),
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and therefore we have successfully shown that ||ul[yrrq) is indeed a norm for the
sobolev space W*?(()).

Step 2. The only remaining thing in need of a rigorous proof is completeness.
Suppose {u, }°°, is a Cauchy sequence in W"?(€). It is trivial to see that this means
that {D%u, }5°, is a Cauchy sequence in LP(2) for any |a| < k. By completeness of
LP(Q2) there exists a function u, € LP(Q) such that D%, — u, in LP(Q2). We take
some ¢ € C(€2). Then we have

/uDO‘gbdx = lim [ u,D%dx = lim ( |a/D°‘u odx
n—oo

nHOO
Q 0
= (=1 / Ui,
0
which means that for any u € W*?(Q) we have D = u,, with |a| < k and thus
u, — u in WHP(Q). O

Remark 4.20. For any k& € {0,1,2,...} we denote the Sobolev space Wy ?(Q) by
HE(Q). This follows from the fact that W, is a Hilbert space for any k € {0,1,2, ..., }.
For more details, the reader may consult [1], chapter 8.

4.4 Weak solutions

Definition 4.21. We define the bilinear form B[, -] associated with the divergence
form elliptic operator L (4.8) as follows:

g AUy, Vg; + g bt v + cuv
7,0=1

Definition 4.22 (Weak solution of an Elliptic Operator). A function u € Hj () is
called a weak solution of equation (4.8) if

Blu,v] = (f,v) for all v € Hy(£2),

where B, ] is the bilinear form
- au ov &
Blu, v ::/; 8 83:] Zb —v+c( Juv.
o b =1

4.5 Existence of weak solutions

In this section, we will use the Lax-Milgram theorem to show that there exists a
unique weak solution to the following Dirichlet boundary value problem. This chapter is
based on the lectures held by Professor Radulescu |7]. In addition to the aforementioned
lecture notes, the author made use of [2] to address gaps in his understanding of the
material presented in this section.

L —f 0
{uﬂm S, (4.11)

u =0 on 0f.
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Remark 4.23. As we will see later, the choice of p is not arbitrary. As part of proving
the existence of a unique weak solution to the above problem, we will also clarify the
choice of pu.

4.5.1 Lax-Milgram theorem

Theorem 4.24 (Lax-Milgram). Let H be a Hilbert space with an inner-product induced
norm || - || and let B : H x H — R be a bilinear form. If there exist a, f > 0 such that
for every u,v € H we have

i) Boundedness: |Blu,v]| < o||ul|||v]],
i) Coercivity: SB||ul|* < Blu,u),
then for any f € H' there exists a unique u € H such that
Blu,v] = (f,v) for allv € H,
where (-,-) is the inner-product associated with H and H' is the dual of H.

Proof. Existence. Taking a fixed w € H means that v — Blw,v] is a bounded linear
functional on H. By the Riesz representation theorem A.13, there exists a unique
u € H such that (u,v) = Blw,v] for all v € H, where (-,-) is the inner product of H.
Let us now define an operator A : H — H, Alw] := u. We show that A is a bounded
linear operator. To show linearity, we note that

(A[/\1u1 + /\QUQ], U) = B[/\1u1 + )\QUQ, U] = )\1B[U1, U] + )\2B[u2, ’U]
= (MA[u1] + AAlusg], v) for all v € H,

which means that A[\ju; + Aug] = A\ Afug] + A2 Alus]. To show boundedness, we note
that
| Aul|® = (Au, Au) = B[Au, u] < afjul| - || Aul,

and thus ||Au|| < «|ul|. Furthermore range(A) is closed in H. Let {yx} be a con-
vergent sequence in range(A) so that there exists a sequence {uy} C H for which
yr = Alug] — y € H. By coercivity we have [juy — u;|| < 5| Afug] — Alu;]||, which
implies that {us} is a Cauchy sequence in H. Therefore u;, converges to some element
uw € H and y = Afu| and thus we conclude that y € range(A). Therefore range(A)
is closed in H. Suppose that range(A) # H. That means that we can express H as
H = range(A) ®range(A)*. Let z € range(A) be a non-zero element. By the coercivity
condition we have §3||z]|? < B[z, 2] = (Az,2) = 0, which is a contradiction. The Riesz
representation theorem A.13 implies that for each ¢ € H’ there exists an element
z € H for which ¢(v) = (z,v) for all v € H. This means that we can find a u such
that z = Afu|, meaning (z,v) = (Au,v) = Blu,v] for all v € H. This means that we’ve
found an element u € H for which Blu,v] = (f,v) for all v € H.

Uniqueness. Suppose ug, us both satisfy Bluy,v] = Blug,v] = (f,v) forallv € H.
Therefore, Bluy — ug,v] = 0 for all v € H. By coercivity of the bilinear form B we
have (||lu; — usl]? < Bluy — ug, u; — ug] = 0 and thus u; = us. O
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Theorem 4.25 (Energy estimates). There exist constants «, 8,y > 0, such that
i) |Blu, vl < alullalv]la,
i) Bllullfy < Blu,u] +y|ull2qy for all u,v € H.

Proof. To prove the first claim of the theorem we start out by establishing a boundary
for | Blu, v]|.

n

| Blu, v]| = ‘ / Z i (T) Uy Vg, + Z bi(z)uz,v + cuvdz
i=1

o ig=1
< Z ||a,-j||Loo/|Du-Dv|dx
e 0 (4.12)

3 bl / Dulfoldz
=1 Q

Fllell o /u2da:,

Q

where we justify the inequality by the fact that a;;,b;, c are by hypothesis in L>(€2).
Using the Hélder inequality A.2 as many times as required and by the definition of
the norm associated with H we arrive at

|Blu, v]| < Cllullallvlla,

where C'is a constant.
To prove the second claim of the theorem, we use the definition of ellipticity. There
exists A > 0, such that

)\/]Du\2dx§/Zaij(:z:)uziuzjd:c
Q Q!

i,j=1
= Blu,u| — /Zbl(:c)uzu + cu’dx (4.13)
Q =1
< Bluu]+ Y HbiHLoo/\DuHu|dx+ lell e /qux.
i=1 Q Q

For any € > 0 and z,y we have

2

:cyﬁ&ta?%—i—g,

since
2

0<( Ex—L)Q & xy§5x2+y—.

2\/e 4e
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Using this simple fact, we have

2 1
|Dullu| < e|Dul* + Z— = / | Dul|u|dx < e/ | Du|*dx + 4—/u2dx.
£ 5
0 0 0

Choosing £ > 0 such that & 3 ||b;|| .~ < 3 and putting this into equation (4.13) yields
i=1

= 1
[ 1wt < Bl + (3 i) ¢ [ 1Dufde+ g [t
Q = Q Q

Fllefl o /qua:

Q

A 2 1 - L 2
< Bl + 5 [ 1DuPde s (32 0dom) + 161 [
Q = Q

A simple rearrangement of terms and adding 3 [ |u|?*dz to both sides of the inequality,
)

results in \
2 lullzr < Blu,u] + (€ + )l[ullizq)-

O

Theorem 4.26 (First existence theorem for weak solutions using the Lax-Milgram
theorem). There exists a number v > 0 such that for each p > v and each function
f € L*(Q), there exists a unique weak solution u € H = HZ(Q) of the following
Dirichlet boundary value problem:

Lu+pu=f in €,
u=>0 on Of).

Proof. Let v be the constant from theorem 4.25. We choose 1 > v and define the bilin-
ear form B),[u, v] := Blu, v]+u(u,v) 2, for any u,v € H. We will show that this bilinear
form satisfies the hypothesis of the Lax-Milgram theorem 4.24. By theorem 4.25 and
the Cauchy-Schwarz inequality A.1 we have

| Bulu, vl| = |Blu, v] + p(u, v) 2| < |Blu, v]| + p|(u, v) 2]

(4.14)
< Cllullallvlla + pllullzz vl e

Since H = H3(Q) = WZ*(Q), we have

1/2 1
ey = (£ fIDudr) " = (e + 3 [IDoufdr)”

la]<2 © 1<lal<2 ©
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We can rewrite equation (4.14) by using the fact that the square root is concave:

| Bulu, v]| < Cllullullvlla + pllull (o]l 22

1

2 2 5
= [Pl + S 10ull) (el + 52 10°l)]

al=1 |a]=1
1
2

(R ATS]

2 2
< [(C*+2%) (llull> + 32 I1DullZ2) (vllZ2 + 32 [1D*v]7:)]

lor|=1 |o|=1

1
< (C*+p®)2|ullz vz

N

Using the second bound from theorem 4.25, we find that
Bylu,u] = Blu,u] + p(u, )2 > Blu, u] +[|ull7> > Bllullm,

which establishes coercivity. Let f be a function in L*(2) and define p;(v) = (f,v) 2.
Using the Cauchy-Schwarz inequality A.1 we show that ¢y is a bounded linear func-
tional.

lor () = 1(f,0) 2] < I fllz2llvllze < 1Al o]l

We established coercivity and boundedness of the bilinear form B, and showed that
the linear functional ¢ is bounded. Therefore, having fulfilled the hypothesis of the
Lax-Milgram theorem 4.24 we conclude that there exists a unique function v € H
such that B, [u,v] = ¢f(v) for all v € H. In other words, there exists a unique weak
solution u € H to the Dirichlet boundary value problem (4.11). O

A Elementary results

Theorem A.1 (Cauchy-Schwarz inequality). Let (V,(-,-)) be an inner product space.
Then |(u,v)]* < (u,u) - (v,v) holds for all u,v € V, where (-,-) denotes the inner
product of V.

Theorem A.2 (Holder inequality). Let p,q € [1, 00|, such that %—l—% =1 and Q C R™
For any two functions f € LP(Q) and g € L4(Q), we have fg € L'(Q) and additionally
the inequality | fgllzr ) < I1f o ll9llze() holds.

Theorem A.3 (Minkowski inequality). Let f and g be two functions such that f,g €
LP(QY), where Q C R™ and 1 < p < oo. Then we have f+ g € LP(Q2) and the inequality
Nf+gllee@ < [ fllr) + |9l L) holds.

Remark A.4. For more information on the Holder inequality and the Minkowski
inequality, the reader may consult [9], chapter 1.

Theorem A.5 (Fubini’s theorem). Let X and Y be two o-finite measure spaces and
f: X XY = R a function that is X XY 1integrable. Then

/</f(x,y)dy>dx:/(/f(:c,y)dx)dy: / Fz,y)d(z,y).

X X XY
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Remark A.6. For more details, the reader may consult [10], page 75.

Theorem A.7 (Green’s formulas). Let Q be a bounded open subset of R™ with C*
boundary and u,v € C*(Q). Then

i) [Audr = [ %4do,
Q 0

ii) [ Dv-Dudr = — [ulAvdz + [ 2udo,
Q Q o9

iti) [uAv—vAudr = [ udl —v2do.
Q o9

Remark A.8. For more details, the reader may consult [2], page 715.

Theorem A.9 (Gauss divergence theorem). Given a compact subset V of R" having
a piecewise smooth boundary S and a continuously differentiable vector field F, that s
defined in a neighbourhood of V', we have:

[[fv-F)av = (f®-n)as.
\% S

Remark A.10. For more details, the reader may consult [4], page 60, for a very
general version of the Stokes theorem.

Theorem A.11 (Lebesgue differentiation theorem). For a Lebesgue integrable func-
tion, i.e. f € L*(R™), we have
1
rli%i B / |f(t) — f(x)|dA(t) =0 for almost all = € R",

B(z,r)
where B(z,7) is a ball in R™ of radius r, centered in x and X is the Lebesgue measure.
Remark A.12. For more details, the reader may consult [10], page 104.

Theorem A.13 (Riesz representation theorem). Let H be a Hilbert space and ¢ a
continuous linear functional, i.e. ¢ € H', where H' is the dual space of H. Then there
exists f € H such that for any x € H, p(z) = (f,x) and || fllg = ||¢||ln, where (-, ")
denotes the inner product of the H.

Remark A.14. For more details, the reader may consult 1], page 97.

Lemma A.15 (Boundary of connected components). For any connected component
V of a set Q@ C R"™, we have OV C 0f).

Proof. Let x be any element of V' Nint(€2). Since R™ is locally connected, there exists a
connected neighbourhood of x in int(€2), i.e. there exists U, C int(2) such that z € U,.
Since U, and V are connected sets and are non-disjoint, their union must be connected.
Suppose that U, is not a subset of V. This implies that V' is not a maximally connected
subset of €2, which is in direct contradiction with the assumption that V' is a connected
component of ). Therefore, x € U, C V and V is relatively open in 2. V' is a connected
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component and therefore relatively closed in 2. Thus, int(V) =V = V Nint(£). Since
r €V Nint(Q) = x € int(V'), we can show that 9V C 99 as follows:

OV = V\int(V) € V\int(Q) = Q\int(Q) = 99.

More information on connected components, their properties and the notion of

connectedness can be found in [5], page 157. O
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