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Streszczenie

Tematem pracy jest wprowadzenie do podstawowej teorii i metod u»ywanych w elip-
tycznych równaniach ró»niczkowych cz¡stkowych. W pierwszym rozdziale dokonano
krótkiego przegl¡du równa« ró»niczkowych cz¡stkowych oraz ich klasy�kacji. Rozdziaª
drugi zostaª po±wi¦cony funkcjom harmonicznym oraz ich wªasno±ciom. W trzecim
rozdziale podano wyprowadzenia podstawowych rozwi¡za« dla równa« Laplace'a i
Poissona. W ostatnim rozdziale zostaªy zawarte dwa gªówne twierdzenia dotycz¡ce ist-
nienia rozwi¡za« eliptycznych równa« ró»niczkowych cz¡stkowych, mianowicie metoda
Perrona oraz istnienie sªabych rozwi¡za« przy u»yciu twierdzenia Laxa-Milgrama.

Abstract

This thesis covers the basic theory and methods used in the study of elliptic partial
di�erential equations. The �rst chapter gives a quick overview of partial di�erential
equations and their classi�cation. The second chapter revolves around harmonic func-
tions and their properties. The third chapter contains a full development of the fun-
damental solution to the Laplace equation and solution to the Poisson equation. The
fourth chapter covers two major existence results for elliptic PDE, namely the Perron
method and the existence of weak solutions using the Lax-Milgram theorem.

Sªowa klucze

Równania ró»niczkowe cz¡stkowe, funkcje harmoniczne, równanie Poissona, funkcja
Greena, metoda Perrona, przestrzenie Sobolewa, twierdzenie Laxa-Milgrama, sªabe
rozwi¡zania;

Keywords

Partial di�erential equations, harmonic functions, Poisson equation, Green function,
Perron method, Sobolev spaces, Lax-Milgram theorem, weak solutions;
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1 Introduction

This chapter contains a short introduction to partial di�erential equations, their
classi�cation, and introduces the Laplace and the Poisson equation alongside two basic
boundary conditions. For a more in-depth overview of partial di�erential equations,
the reader may �nd the book Partial Di�erential Equations [2] helpful.

1.1 Second order partial di�erential equations

1.1.1 De�nition

De�nition 1.1. Let Ω be an open subset of Rn. A second order partial di�erential
equation is of the form

F (D2u,Du, u, x) = 0, (1.1)

where u : Ω → R is an unknown function, D2u the Hessian matrix of u, and Du the
gradient of u.

De�nition 1.2. A second order PDE is

i) linear if equation (1.1) takes the following form:

n∑
i,j=1

aij(x)
∂2u

∂xixj
+

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u = f(x),

ii) semilinear if the second order terms of equation (1.1) are linear:

n∑
i,j=1

aij(x)
∂2u

∂xixj
+ F ′(Du, u, x) = f(x),

where F ′ is a �rst order PDE that is not linear; otherwise the PDE would simply
be linear.

iii) quasilinear if the coe�cients aij only depend on Du, u and x:

n∑
i,j=1

aij(Du, u, x)
∂2u

∂xixj
+ F ′(Du, u, x) = f(x).

If all aij are independent of Du and u then the PDE is not quasilinear. It is
either linear or semilinear, depending on the linearity of F ′.

iv) non-linear if it is none of the above.

De�nition 1.3. u : Ω→ R is a classical solution to the PDE (1.1) if

i) u ∈ C2(Ω),

ii) equation (1.1) holds for all x ∈ Ω.
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1.1.2 Classi�cation

For a linear or semi-linear PDE we can rewrite equation (1.1) as follows:

F (D2u,Du, u, x) =
n∑

i,j=1

aij(x)
∂2u

∂xixj
+ F ′(Du, u, x) = 0.

We de�ne a matrix A(x) =
(
aij(x)

)
i,j=1..n

and thanks to the C2 regularity of classical

solutions, the matrix D2u is symmetric. Without loss of generality, we can assume that
A is symmetric. In fact, suppose that A is not symmetric and let Ã = 1

2

(
A+AT

)
. By

symmetry of D2u, we deduce that A · D2u = Ã · D2u and thus, we can replace the
non-symmetric matrix A with the symmetric matrix Ã. Since A is real symmetric, it
is also diagonalizable, allowing for the classi�cation of any semi-linear or linear PDE
using only the eigenvalues of the corresponding matrix A.

De�nition 1.4. A linear or semi-linear second order PDE is

i) elliptic if the eigenvalues of A are all either strictly positive or strictly negative,

ii) parabolic if at least one eigenvalue of A is zero,

iii) hyperbolic if all eigenvalues of A are non-zero, and exactly n − 1
are negative, leaving 1 eigenvalue to be positive or conversely n − 1 positive,
leaving 1 eigenvalue to be negative.

1.2 Basic equations

The Laplace equation is one of the most fundamental equations in the study of
elliptic PDE.

∆u =
n∑
i=1

∂2u

∂x2
i

= 0.

An extension of the Laplace equation is the Poisson equation,

∆u = ϕ,

where ϕ is some function.

1.3 Boundary conditions

The study of PDE is not limited to studying problems of varying linearity. A lot
of time and energy goes into studying problems with various boundary conditions.
One such boundary condition of interest to us, is the Dirichlet boundary condition.
We will restrict ourselves to the study of problems with such boundary conditions.
Nonetheless, the notions, methods and tools developed in this work are not limited to
the study of elliptic PDE with Dirichlet boundary conditions.
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u(x) = f(x) on ∂Ω, (Dirichlet boundary condition)

∂u

∂ν
(x) = f(x) on ∂Ω, (von Neumann boundary condition)

where ∂u
∂ν

(x) is the normal derivative of u, f some function, and Ω ⊂ Rn.

2 Harmonic functions

The focus of this chapter are harmonic functions and their properties, which will
be useful in subsequent chapters, wherein we will solve the Laplace equation, develop
the corresponding fundamental solution, develop Green's function to solve the Poisson
equation for various boundary conditions and provide a su�ciently general existence
result for the Laplace equation. This chapter loosely follows a series of lectures on
elliptic equations, held by Professor Vicentiu D. Radulescu in the fall of 2018 at AGH
University of Science and Technology [7]. The lectures focused on providing a general
overview and most theorems were given without full proofs. Thus, this chapter seeks
to complement and extend some of the material covered in the lectures. The author
wishes to acknowledge the important contribution of the lectures on the following
material.

Remark 2.1. We will make frequent use of the following notation.

i) Br(x) denotes a ball of radius r, centered at x, i.e.

Br(x) = {y ∈ Rn | |x− y| < r},

ii) ωn denotes the measure of the boundary of a unit ball in the euclidian space Rn,
i.e. the measure of ∂B1(0),

iii)
∫
∂Ω

dσx denotes the surface integral over ∂Ω,

iv) For a set Ω ⊂ Rn, we denote the measure of Ω by |Ω|, where unless stated
otherwise the measure used is the Lebesgue measure.

v) Ω ⊂ Rn is an open bounded subset of Rn, unless stated otherwise.

De�nition 2.2. A function u ∈ C2(Ω) is harmonic if ∆u = 0.

2.1 Mean value properties

De�nition 2.3. Given a function u ∈ C(Ω), we say that

i) u satis�es the �rst mean value property in Ω if

u(x) =
1

|∂Br(x)|

∫
∂Br(x)

u(y)dσy for any Br(x) ⊂ Ω,
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ii) u satis�es the second mean value property in Ω if

u(x) =
1

|Br(x)|

∫
Br(x)

u(y)dy for any Br(x) ⊂ Ω.

Remark 2.4. The �rst and second mean value property are equivalent. This follows
from the de�nition of the mean value properties. We take the �rst mean value property
and rewrite it as follows:

u(x)rn−1 =
1

ωn

∫
∂Br(x)

u(y)dσy.

After integrating over r, we can simplify by directly integrating over Br(x) instead
of integrating over ∂Br(x) and subsequently integrating over [0, r]. This follows from
Fubini's theorem A.5.

u(x)
rn

n
=

1

ωn

r∫
0

∫
∂Bt(x)

u(y)dσydt =
1

ωn

∫
Br(x)

u(y)dy.

The measure of Br(x) can be written as |Br(x)| = n
ωnrn

. Therefore,

u(x) =
n

ωnrn

∫
Br(x)

u(y)dy =
1

|Br(x)|

∫
Br(x)

u(y)dy.

Theorem 2.5. A function u ∈ C2(Ω) satis�es the mean value properties in Ω if and
only if u is harmonic in Ω.

Proof. Step 1. Suppose u is harmonic and let

ϕx(r) : {r ∈ R>0 | Br(x) ⊂ Ω} → R,

for any x ∈ Ω be de�ned as follows:

ϕx(r) =
1

|∂Br(x)|

∫
∂Br(x)

u(y)dσy.

We introduce a change of variable y = x+ rω, which yields

ϕx(r) =
1

ωn

∫
∂B1(0)

u(x+ rω)dσω.

By taking the derivative of ϕx with respect to r, we get

ϕ′x(r) =
1

ωn

∫
∂B1(0)

∇u(x+ rω) · ωdσω. (2.1)
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A simple change of variable ω = y−x
r

allows (2.1) to be transformed into a boundary
integral. The Gauss divergence theorem A.9 allows for the boundary integral to be
transformed into an integral over Br(x). Namely,

ϕ′x(r) =
1

ωnrn−1

∫
∂Br(x)

(
∇u(y) · ~n

)
dσy =

1

ωnrn−1

∫
Br(x)

div(∇u(y))dy

=
1

ωnrn−1

∫
Br(x)

∆u(y)dy = 0.

Therefore, ϕx is constant. By the Lebesgue di�erentiation theorem A.11, we have

ϕx(r) = lim
t→0+

ϕx(t) = lim
t→o

1

|∂Bt(x)|

∫
∂Bt(x)

u(y)dσy = u(x),

and thus u satis�es the mean value property.
Step 2. We show that if u satis�es the mean value property, then u is harmonic.

We assume by contradiction that u is not harmonic in Ω and that the mean value
property holds. If u is not harmonic, we have ∆u 6≡ 0. Therefore, there exists a point
x and r > 0, such that ∆u > 0 (or equivalently ∆u < 0) in Br(x) ⊂ Ω. The reasoning
used in step 1 yields the following contradiction:

0 = ϕ′r(x) =
1

ωnrn−1

∫
Br(x)

∆u(y)dy > 0.

Theorem 2.6 (Strong maximum principle). For a function u ∈ C2(Ω)∩C(Ω̄) that is
harmonic in Ω we have

max
Ω̄

u = max
∂Ω

u.

Furthermore, if Ω is connected and there exists x0 ∈ Ω such that u(x0) = max
Ω̄

u, then

u is constant in Ω.

Proof. Step 1. Suppose that Ω is connected and that there exists x0 ∈ Ω, such that
u(x0) = max

Ω̄
u =: M , i.e. u attains its maximum over Ω in x0 ∈ Ω.

We de�ne a set V = {x ∈ Ω | u(x) = M}. V is relatively closed in Ω because
V = u−1[{M}], i.e. V is the preimage of the closed set {M}, making its preimage
a closed set as well. On the other hand, since Ω is open and V non-empty, for any
v ∈ V we can �nd r > 0 such that Br(v) ⊂ Ω. A simple application of the mean value
property immediately shows that u ≡M in Br(v).

M = u(v) =
1

|Br(v)|

∫
Br(v)

u(y)dy ≤ 1

|Br(v)|

∫
Br(v)

Mdy ≤M.

Therefore, we have Br(v) ⊂ V , making V relatively open in Ω. This implies that
V = Ω, since by hypothesis Ω is connected, which means that only Ω and ∅ can be
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relatively clopen in Ω. Since x0 ∈ V , V is non-empty and therefore we have V = Ω.
This proves the second claim of the theorem. Additionally, if Ω is connected the second
claim of the theorem directly implies the �rst claim.

Step 2. What remains to be shown is that for Ω not connected the �rst claim of
the theorem still holds. If the maximum of u is not attained in Ω, then the �rst claim
of the theorem holds. If the maximum of u is attained in Ω, there exists a point x ∈ Ω,
such that u(x) = max

Ω
u =: M . We de�ne the set V as in step 1. Additionally we de�ne

C as the intersection of all in Ω relatively clopen sets containing x. Let Ṽ := V ∩ C.
Since Rn is locally connected, Ω is locally connected as well. We know that in a locally
connected space the intersection of clopen sets containing x is equal to the connected
component of Ω containing x, i.e. the maximally connected subset of Ω containing x
with inclusion as the criteria for the maximum. Therefore C is connected and the same
reasoning we used in step 1, applied to Ṽ and C, holds and shows that Ṽ = C.
By lemma A.15, we know that ∂Ṽ ⊂ ∂Ω. Since the only clopen sets in Rn are the
empty set and Rn we that there exists some point y ∈ ∂Ω ∩ ∂Ṽ . Since u|

Ṽ
≡ M , we

conclude that u(y) = M and thus u attains its maximum on the boundary of Ω.

2.2 Superharmonic and subharmonic functions

De�nition 2.7. A function u ∈ C2(Ω) is

i) subharmonic in Ω if −∆u ≤ 0 in Ω,

ii) superharmonic in Ω if −∆u ≥ 0 in Ω.

Theorem 2.8 (Mean value inequality). Given a function u ∈ C2(Ω), a point x ∈ Ω
and r > 0 such that Br(x) ⊂ Ω the following claims hold.

i) If −∆u > 0 in Br(x), then for any 0 < t < r we have

u(x) >
1

|∂Bt(x)|

∫
∂Bt(x)

u(y)dσy.

ii) If −∆u < 0 in Br(x), then for any 0 < t < r we have

u(x) <
1

|∂Bt(x)|

∫
∂Bt(x)

u(y)dσy.

Proof. We start out by proving the �rst part of the theorem. The method used in
theorem 2.5 can be used to show that for any s ∈ [0, t], we have that if −∆u > 0, then

0 >
1

sn−1

∫
Bs(x)

∆u(x)dx =

∫
∂B1(0)

∂u

∂s
(x+ sω)dσω =

∂

∂s

∫
∂B1(0)

u(x+ sω)dσω.

6



Integrating with respect to s from 0 to t and a subsequent trivial rearrangement yields

1

|∂B1(0)|

∫
∂B1(0)

u(x+ tω)dσω < u(x).

To show the claim for −∆u < 0 we simply switch the inequalities around.

Lemma 2.9. Under the assumption of theorem 2.8 the following claims hold.

i) If xo is a minimum point of u in Ω, then −∆u(x0) ≤ 0.

ii) If xo is a maximum point of u in Ω, then −∆u(x0) ≥ 0.

Proof. We prove the �rst claim of the lemma. The second claim follows from the same
line of reasoning.
Suppose x0 is a minimum point of u in Ω with −∆(x0) > 0. Since ∆u is continuous in
Ω, there exists a neighbourhood of x0, which we denote by Bδ(x0), in which −∆u > 0.
We make use of theorem 2.8, which states that

u(x0) >
1

|∂Bδ′(x0)|

∫
∂Bδ′ (x0)

u(y)dσy,

for any 0 < δ′ < δ. This contradicts the assumption that x0 is a local minimum of u.

Theorem 2.10 (Weak maximum principle). For a function u ∈ C2(Ω) ∩ C(Ω̄),
we have that

i) −∆u ≥ 0 in Ω⇒ min
Ω̄
u ≥ min

∂Ω
u,

ii) −∆u ≤ 0 in Ω⇒ max
Ω̄
u ≤ max

∂Ω
u.

Proof. We will only show the �rst claim, since the second claim can be shown using
the same argument. Suppose −∆u ≥ 0. We de�ne uδ := u− δ|x|2 for any δ > 0. The
function uδ is strictly superharmonic, i.e. −∆uδ = −∆u+ 2δn > 0. Suppose that x0 is
a minimum of uδ in Ω. By lemma 2.9, we have −∆uδ(x0) ≤ 0, which is a contradiction.
Therefore, min

Ω̄
uδ ≥ min

∂Ω
uδ. Letting δ → 0, we arrive at the desired conclusion.

Remark 2.11. We say that a function u is smooth if it is of C∞ regularity.

Theorem 2.12 (Removable Discontinuity). For a function u and some R > 0 such
that u ∈ C(∂BR(0)) ∩ C2(BR(0)\{0}) is harmonic in BR(0){0} and satis�es the fol-
lowing condition,  lim

|x|→0

u(x)
log |x| = 0 if n = 2,

lim
|x|→0

u(x)
|x|2−n = 0 if n ≥ 3,

we can rede�ne u, such that u smooth and harmonic in all of BR(0).
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Proof. Case 1. n = 2.
Suppose that u is continuous in BR(0)\{0}, lim|x|→0

u(x)
log |x| = 0, and suppose that v is

a solution of the problem {
∆v = 0 in BR(0),
v = u on ∂BR(0).

The existence of such a function v ∈ C∞(BR(0)) is guaranteed by theorem 3.7. All we
need to show is that u ≡ v in BR(0)\{0}. Let

w := v − u in BR(0)\{0} and Mr := max
∂Br(0)

|w| for any r > 0, such that r < R.

For any x ∈ ∂Br(0), we have

−Mr

log |x|
R

log r
R

≤ w(x) ≤Mr

log |x|
R

log r
R

.

Since log |x| and w(x) are harmonic functions this holds not only on ∂Br(0) but also
in Br(0) thanks to the weak maximum principle 2.10. Thus,

|w(x)| ≤Mr

log |x|
R

log r
R

,

for any x ∈ BR(0)\Br(0). We can establish a boundary for Mr. Namely, we get

Mr = max
∂Br(0)

|v − u| ≤ max
∂Br(0)

|v|+ max
∂Br(0)

|u| ≤ max
∂BR(0)

|v|+ max
∂Br(0)

|u|

≤ max
∂BR(0)

|u|+ max
∂Br(0)

|u|.

Therefore, for any �xed x such that 0 < |x| < R, we have

|w(x)| ≤ max
∂BR(0)

|u|
log |x|

R

log r
R

+ max
∂Br(0)

|u|
log |x|

R

log r
R

,

with any r such that 0 < r < |x|. If r → 0 we conclude that |w(x)| → 0. This follows
from the assumption that u = o(log |x|), which implies that max

∂Br(0)
u 1

log(r)
→ 0. Thus,

we arrive at the desired result, i.e. w ≡ 0 in BR(0)\{0}.
Case 2. n ≥ 3.

We use the same method as for the case n = 2 to establish the following boundary:

|w(x)| ≤Mr
x2−n

r2−n ,

for any x ∈ BR(0)\Br(0). Using the same boundary as before for Mr, we show that
|w(x)| → 0 as r → 0.
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2.3 Additional properties of harmonic functions

Theorem 2.13 (C∞ regularity of harmonic functions). If u ∈ C(Ω) satis�es the mean
value property in Ω, then u ∈ C∞(Ω).

Proof. Let η be the standard molli�er and let uε := ηε ∗ u in Ωε, where ηε(x) := 1
ε
η(x

ε
)

and Ωε := {x ∈ Ω | dist(x, ∂Ω) > ε}. We know that η ∈ C∞c (Rn) and uε ∈ C∞(Ωε).
For more details and an in-depth proof of this claim, the reader may consult [8]. Our
aim is to show that uε(x) = u(x). We will do so by making use of the mean-value
property.

uε(x) =

∫
Ω

ηε(x− y)u(y)dy =
1

εn

∫
Bε(x)

η
(x− y

ε

)
u(y)dy

=
1

εn

ε∫
0

η
(r
ε

)( ∫
∂Br(x)

u(y)dσy

)
dr =

1

εn

ε∫
0

η
(r
ε

)ωn
n
rn−1u(x)dr

= u(x)

∫
Bε(0)

ηε(y)dy = u(x).

(2.2)

This concludes the proof, since u ≡ uε in Ωε, which means that u ∈ C∞(Ωε) for every
ε > 0.

Theorem 2.14 (Pointwise estimates for derivatives). Let u be a harmonic function in
Ω. Then for every Br(x) ⊂ Ω and a multi-index α, the following pointwise estimates
for the derivatives of u hold.

|Dαu(x)| ≤
C|α|
rn+|α|‖u‖L1(Br(x)), (2.3)

where C0 = n
ωn
, Ci = (2n+1i)ini+1

ωn
for i = 1, 2, ....

Proof. We prove this theorem via induction.
For i = 0 this is trivial, since equation (2.3) is equivalent to the mean value property

that holds for all harmonic functions.
For i = 1 we simply recall that for any j = 1...n uxj is harmonic due to u being

harmonic. Therefore, uxj ful�lls the mean value property and thus we have

|uxj(x)| =
∣∣ 1
|Br/2(x)|

∫
Br/2(x)

uxj(y)dy
∣∣ =

∣∣ 2nn
ωnrn

∫
∂Br/2(x)

u(y)νjdσy
∣∣

≤ 2n
r
‖u‖L∞(∂Br/2(x)),

(2.4)

where the second equality follows a trivial application of the Gauss divergence theorem
A.9. For any y ∈ ∂Br/2(x), we have Br/2(x) ⊂ Br(x) ⊂ Ω and therefore

|u(y)| ≤ 2nn

ωnrn
‖u‖L1(Br(x)), (2.5)
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from the previously established result for i = 0. Inserting equation (2.5) into equa-
tion (2.4), namely replacing ‖u‖L∞ , completes the proof for the case i = 1.

Suppose that i ≥ 2 and that the estimates of the theorem hold for each multi-index
β of order smaller than i. We �x Br(x) ∈ Ω and take a multi-index α of order i. We can
express Dαu via Dβu, namely for some j ∈ {1, ..., n}, we have that Dαu = (Dβu)xj .
Since Dβu is harmonic, we can use the same reasoning as above, which yields

|Dαu(x)| ≤ ni

r
‖Dβu‖L∞(∂Br/i(x)). (2.6)

For each y ∈ Br/i(x) we have Br(i−1)/i(y) ⊂ Br(x) ⊂ Ω and hence we may use the
estimates of the theorem as follows:

|Dβu(y)| ≤ (2n+1(i− 1))i−1ni

ωn( i−1
i
r)n+i−1

‖u‖L1(Br(x)). (2.7)

Theorem 2.15 (Liouville). A harmonic and bounded function u : Rn → R is constant.

Proof. We take r > 0 and �x x ∈ Rn. Then we apply theorem 2.14 on Br(x).
Hence we get

|Du(x)| ≤ C1

rn+1
‖u‖L1(Br(x)) ≤

C1ωnr
n

rn+1n
‖u‖L∞(Br(x)) ≤

C

r
→ 0,

as r →∞. Thus, u is constant.

Theorem 2.16 (Harnack's inequality). For every connected open set V ⊂⊂ Ω,
there exists a constant C that only depends on V such that for any non-negative har-
monic function u in Ω the following holds

sup
V

u ≤ C inf
V
u.

Proof. Let r := 1
4
dist(V, ∂Ω). We choose x, y ∈ V such that |x − y| ≤ r. This implies

that

u(x) =
1

|B2r(x)|

∫
B2r(x)

u(z)dz ≥ n

ωn2nrn

∫
Br(y)

u(z)dz

=
1

2n|Br(y)|

∫
Br(y)

u(z)dz =
1

2n
u(y). (2.8)

Using this inequality twice we �nd that 1
2n
u(y) ≤ u(x) ≤ 2nu(y) for all x, y ∈ V such

that |x− y| ≤ r. Since the closure of V is compact there exists a �nite family of balls
{Bi}Ni=1, all of radius

r
2
, that cover V̄ . On top of that by hypothesis V is connected,

which allows us to create not only a �nite covering of V but do so with a chain of
balls, meaning that the family of balls {Bi}Ni=1 is ordered such that Bi ∩ Bi−1 6= ∅.
This completes the proof, since for any x, y ∈ V , we also have x ∈ Bk, y ∈ Bj for
k, j ∈ {1, ..., N}, which means that

u(x) ≥
( 1

2n

)|j−k|+1

u(y) ≥ 1

2n(N+1)
u(y).
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3 Green's function

In this section, we will develop the fundamental solution of the Laplace equation
and solve the Poisson equation over Rn and for any ball. This section is based on the
material covered during Professor Radulescu's lectures [7]. Additionally, this chapter
is based on results that can be found in [2].

3.1 Fundamental solution of the Laplace equation

The function

Γ(x) :=

{
1

2π
log |x| if n = 2,
1

ωn(n−2)
1

|x|n−2 if n ≥ 3,
(3.1)

de�ned over Rn\{0}, is the fundamental solution of the Laplace equation.

De�nition 3.1. We de�ne the Newtonian potential v of f ∈ Lp(Ω) for 1 < p <∞ as
follows.

v(x) :=

∫
Rn

Γ(x− y)f(y)dy.

Finding the fundamental solution of the Laplace equation is a relatively trivial
matter. We start out by trying to �nd a function w : R→ R such that u(x) = w(|x|)
is a solution to the Laplace equation, where |x| =

( n∑
i=1

x2
i

) 1
2 . For any i = 1, ..., n, we

have

∂ |x|
∂xi

=
1

2|x|
2xi =

xi
|x|
,

which gives us

∂u

∂xi
= w′(|x|) xi

|x|
and

∂2u

∂x2
i

= w′′(|x|) x
2
i

|x|2
+ w′(|x|)

( 1

|x|
− x2

i

|x|3
)
.

Thus we have ∆u = 0 if and only if

∆u = w′′(|x|)
∑
i=1

n
x2i
|x|2 + w′(|x|)

(
n
|x| −

∑
i=1

n
x2i
|x|3
)

= w′′(|x|) + n−1
|x| w

′(|x|) = 0.

If w′ 6= 0, we have w′′

w′
= 1−n

|x| and by integration we have w′(|x|) = a
|x|n−1 , where a is a

constant. Therefore, we �nd that the function w(|x|) takes the following form.

w(|x|) =

{
b log(|x|) + c if n = 2

b
|x|n−2 + c if n ≥ 3,

where b, c are constants.

Theorem 3.2 (Fundamental solution of the Poisson equation). Let u be the Newtonian
potential of a function f ∈ C2

c (Rn). Then
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i) u ∈ C2(Rn),

ii) −∆u = f in Rn.

Proof. Step 1. Clearly,

u(x) =

∫
Rn

Γ(x− y)f(y)dy =

∫
Rn

Γ(y)f(x− y)dy,

therefore,

u(x+ hei)− u(x)

h
=

∫
Rn

Γ(y)
(f(x+ hei − y)− f(x− y)

h

)
dy,

where h 6= 0 and ei = (0, ..., 1, 0, ..., 0) where 1 is in the i-th slot. Of course,

f(x+ hei − y)− f(x− y)

h
→ fxi(x− y) uniformly on Rn as h→ 0,

and thus for i = 1, 2, ..., n,

uxi(x) =

∫
Rn

Γ(y)fxi(x− y)dy.

Likewise for i = 1, 2, ..., n,

uxixj(x) =

∫
Rn

Γ(y)fxixj(x− y)dy

and thus, u ∈ C2(Rn), since the right-hand side of the last identity is continuous.
Step 2. Fix ε > 0. Due to the singularity of the fundamental solution at the origin,

we have to be careful in our calculation. Namely, we �rst consider the splitting

∆u(x) =

∫
Bε(0)

Γ(y)∆xf(x− y)dy +

∫
Rn\Bε(0)

Γ(y)∆xf(x− y)dy

=: I1
ε + I2

ε .

(3.2)

Then, polar coordinates implies

|I1
ε | ≤ C‖D2f‖L∞(Rn)|Γ(y)|dy ≤ Cεn−(n−2) ≤ Cε2. (3.3)

Integration by parts implies

I2
ε =

∫
Rn\Bε(0)

Γ(y)∆yf(x− y)dy

=

∫
Rn\Bε(0)

DΓ(y) ·Dyf(x− y)dy +

∫
∂Bε(0)

Γ(y)
∂f

∂ν
(x− y)dσy

=: J1
ε + J2ε, (3.4)
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where ν denotes the inward pointing unit normal along ∂Bε(0). Now,

|J2
ε | ≤ ‖Df‖L∞(Rn)|Γ(y)|dσy ≤ Cε. (3.5)

Another integration by parts and using the harmonic property of Γ yields

J1ε =

∫
Rn\Bε(0)

∆Γ(y)f(x− y)dy −
∫

∂Bε(0)

∂Γ

∂ν
(y)f(x− y)dσy

= −
∫

∂Bε(0)

∂Γ

∂ν
(y)f(x− y)dσy.

(3.6)

It is clear, that DΓ(y) = − y
ωn|y|n (with y 6= 0) and ν = − y

|y| = −y
ε
on ∂Bε(0). Thus,

∂Γ

∂ν
(y) = ν ·DΓ(y) =

1

ωnεn−1
on ∂Bε(0).

Therefore,

J1
ε = − 1

ωnεn−1

∫
∂Bε(0)

f(x− y)dσy

= − 1

|Bε(0)|

∫
∂Bε(0)

f(x− y)dσy → −f(x),

(3.7)

as ε→ 0. Hence, by combining the equations (3.3), (3.4), (3.5), (3.6), (3.7) and sending
ε→ 0 in equation (3.2), we obtain the desired result −∆u(x) = f(x).

For n = 2, we change the estimates for I1
ε and J2ε as follows:

|I1ε| ≤ Cε2| log ε| and |J2
ε | ≤ Cε| log ε|.

With those changes in place, the proof remains valid for n = 2.

3.2 Representation of solutions

Let Ω ⊂ Rn be an open and bounded domain with C1 boundary. A set has a C1

boundary if for each x0 ∈ ∂Ω, there exists r > 0 and a function γ ∈ CRn such that

Ω ∩Br(x0) = {x ∈ Br(x0) | xn > γ(x1, x2, ..., xn−1)},

where if needed we reorient the coordinate axes. Our goal is to �nd a representation
of the solution of the Poisson equation

−∆u = f in Ω,

subject to the boundary condition

u = g on ∂Ω.
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Fix x ∈ Ω, let ε > 0 such that Bε(x) ⊂ Ω. We use Green's formulas A.7 on
Vε = Ω\Bε(x) to show that∫

Vε

u(y)∆Γ(y − x)− Γ(y − x)∆u(y)dy

=

∫
∂Vε

u(y)
∂Γ

∂ν
(y − x)− Γ(y − x)

∂u

∂ν
(y)dσy.

(3.8)

Since ∆Γ(x− y) = 0 for x 6= y and∣∣∣ ∫
∂Bε(x)

Γ(y − x)
∂u

∂ν
(y)dσy

∣∣∣ ≤ Cεn−1 max
∂Bε(0)

|Γ| = o(1),

we can show (as was done in theorem 3.2) that∫
∂Bε(x)

u(y)
∂Γ

∂ν
(y − x)dσy =

1

|∂Bε(x)|

∫
∂Bε(x)

u(y)dσy → u(x), (3.9)

as ε→ 0.
Using equation (3.8) and equation (3.9), we show that

u(x) =

∫
∂Ω

(
Γ(y − x)

∂u

∂ν
(y)− u(y)

∂Γ

∂ν
(y − x)

)
dσy

−
∫
Ω

Γ(y − x)∆u(y)dy.

(3.10)

The equation (3.10) holds for all x ∈ Ω and all u ∈ C2(Ω). We know that u satis�es the
Poisson equation and the boundary values of u on ∂Ω are known. The only unknown
term in (3.10) is ∂u

∂ν
on ∂Ω. To address this we introduce a function φx(y) for any �xed

x ∈ Ω, such that φx solves the boundary-value problem{
∆φx = 0 in Ω,

φx = Γ(y − x) on ∂Ω.

We apply Green's formula once more to obtain

−
∫
Ω

φx(y)∆u(y)dy =

∫
∂Ω

u(y)
∂φx
∂ν

(y)− φx(y)
∂u

∂ν
(y)dσy

=

∫
∂Ω

u(y)
∂φx
∂ν

(y)− Γ(y − x)
∂u

∂ν
(y)dσy.

(3.11)

De�nition 3.3 (Green's function for Ω). We introduce the Green function for Ω.

G(x, y) := Γ(y − x)− φx(y) for x, y ∈ Ω, x 6= y.

14



Using this de�nition allows us to get rid of any terms that include ∂u
∂ν
. We add

equation (3.11) to equation (3.10) and arrive at

u(x) = −
∫
∂Ω

u(y)
∂G

∂ν
(x, y)dσy −

∫
Ω

G(x, y)∆u(y)dy,

where ∂G
∂ν

(x, y) is the outer normal derivative of G with respect to y.
To summarize, if we have a function u ∈ C2(Ω̄) that is a solution of the boundary-

value problem {
−∆u = f in Ω,

u = g on ∂Ω,

for two given continuous functions f and g, then the following holds:

u(x) = −
∫
∂Ω

g(y)
∂G

∂ν
(x, y)dσy +

∫
Ω

G(x, y)f(y)dy. (3.12)

Remark 3.4. For simple shapes Ω we can compute the corrector function φx.

3.3 Green's function for the unit ball

We now set out to explicitly compute the corrector function φx for the unit ball.
For any x ∈ Rn\{0}, we de�ne x̃ := x

|x|2 . We choose a �xed x ∈ B1(0) and we introduce
the following problem {

∆φx = 0 in B1(0),

φx = Γ(y − x) on ∂B1(0),

where G(x, y) = Γ(y − x)− φx(y) is Green's function.
Suppose that n ≥ 3. y 7→ Γ(y−x̃) is harmonic for y 6= x̃ and thus y 7→ |x|2−nΓ(y−x̃)

is harmonic for y 6= x̃ as well. We can therefore say that φx(y) := Γ(|x|(y − x̃)) is
harmonic in B1(0). Furthermore, for y ∈ ∂B1(0) and x 6= 0, we have

|x|2|y − x̃|2 = |x|2
(
|y|2 − 2

y · x
|x|

+
1

|x|2
)

= |x|2 − 2y · x+ 1 = |x− y|2.

Therefore, |x− y|2−n = (|x| |y − x̃|)2−n and we end up with

φx(y) = Γ(y − x) for y ∈ ∂B1(0),

as required.
If n = 2, we can apply the same procedure and we end up with the same result.

This allows Green's function to be de�ned universally, independent of whether n ≥ 3
or n = 2.

G(x, y) := Γ(y − x)− Γ(|x|(y − x̃)), (3.13)

for x, y ∈ B1(0).
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Suppose the function u solves the boundary-value problem{
∆u = 0 in B1(0),

u = g on ∂B1(0),

Taking a look at the representation formula equation (3.12) reveals that

u(x) = −
∫

∂B1(0)

g(y)
∂G

∂ν
(x, y)dσy. (3.14)

According to equation (3.13),

∂G

∂yi
(x, y) =

∂Γ

∂yi
(y − x)− ∂Γ(|x|(y − x̃))

∂yi
.

By simple calculation, we get

∂Γ

∂yi
(y − x) =

1

ωn

xi − yi
|x− y|n

and
∂Γ(|x|(y − x̃))

∂yi
= − 1

ωn

yi|x|2 − xi
|x− y|n

,

for any y ∈ ∂B1(0). Therefore,

∂G

∂ν
(x, y) =

n∑
i=1

yi
∂G

∂yi
(x, y)

= − 1

ωn

1

|x− y|n
n∑
i=1

yi((yi − xi)− yi|x|2 + xi)

= − 1

ωn

1− |x|2

|x− y|n
.

(3.15)

The combination of equation (3.15) and equation (3.13) gives us the representation
formula

u(x) =
1− |x|2

ωn

∫
∂B1(0)

g(y)

|x− y|n
dσy.

We can extend the representation formula to any ball of arbitrary radius using dilation.

De�nition 3.5 (Poisson's formula).

u(x) =
R2 − |x|2

ωnR

∫
∂BR(0)

g(y)

|x− y|n
dσy,

where x ∈ BR(0).

De�nition 3.6 (Poisson's kernel).

K(x, y) :=
R2 − |x|2

ωnR

1

|x− y|n
,

where x ∈ BR(0), y ∈ ∂BR(0).
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All of the above culminates in the following result.

Theorem 3.7 (Poisson's formula for balls). Let g be a continuous function on ∂BR(0).
We de�ne the function u using the Poisson formula 3.5. Then

i) u ∈ C∞(BR(0)),

ii) ∆u = 0 in BR(0),

iii) lim
BR(0)3x→x0

u(x) = g(x0) for each x0 ∈ ∂BR(0).

4 Existence theory

This chapter contains two major existence results and provides an introduction to
sobolev spaces, the notion of weak solutions and elliptic operators.

4.1 Perron method

In this section we will establish an existence and uniqueness result for classical so-
lutions to Dirichlet problems on general domains. The approach in this section loosely
follows [3]. Apart from following the established approach to prove the perron method,
the author developed the content of this chapter independently.

The perron method relies on the existence of solutions on ball domains. While
we will only consider the case of the Laplacian operator, the perron method can be
extended to more general elliptic operators. We consider the following problem{

−∆u = 0 in Ω,

u = ϕ on ∂Ω,
(4.1)

where Ω is a bounded domain in Rn and ϕ is a continuous function on ∂Ω. Addi-
tionally we require that Ω satis�es the exterior sphere condition, which we will discuss
in more detail later.

If Ω is an open ball, then the solutions of equation (4.1) are given by the Poisson
formula and the Green function for ball domains. The purpose of the Perron method
is to prove the existence of a unique solution if Ω is not a ball domain.

We start out by providing an alternative de�nition of subharmonic and super-
harmonic continuous functions based on the maximum principle. This is in contrast
to de�ning subharmonic and superharmonic function using the the more traditional
de�nition that involves the laplacian.

De�nition 4.1. Let Ω be a bounded domain in Rn and v be a continuous function
in Ω. Then v is subharmonic (respectively superharmonic) in Ω if for any ball B ⊂ Ω
and any harmonic function w ∈ C(B̄),{

v ≤ w

v ≥ w
on ∂B ⇒

{
v ≤ w

v ≥ w
in B.

(Subharmonic case)

(Superharmonic case)
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Remark 4.2. If v ∈ C2(Ω) is subharmonic in Ω as de�ned in de�nition 4.1, then it is
also subharmonic in the traditional sense given in de�nition 2.7.

Lemma 4.3. Let u, v ∈ C(Ω̄), where Ω is a bounded open subset of Rn. If u is sub-
harmonic in Ω, v is superharmonic in Ω and u ≤ v on ∂Ω, then u ≤ v in Ω.

Proof. Step 1. We can assume, without loss of generality, that Ω is connected. To
justify this assumption, let us assume that Ω is not connected. We denote the family
of connected components of Ω by C. Thus, every V ∈ C is a maximally connected
subset of Ω, and C forms a partition of Ω.

We know that u ≤ v on ∂Ω. Using lemma A.15, we know that ∂V ⊂ ∂Ω for any
V ∈ C. Therefore, u ≤ v on ∂V for any V ∈ C. Since V is connected, if the lemma
holds for connected sets, we can conclude that u ≤ v in V . Since this is true for any
V ∈ C and C forms a partition of Ω, we have u ≤ v in Ω. Therefore, we can show that
the lemma holds for a connected bounded domain Ω, without loss of generality.

Step 2.We show that the lemma holds if Ω is connected. LetM := max
Ω̄

(u−v) and

D := {x ∈ Ω|u(x)−v(x) = M} ⊂ Ω. D is relatively clopen in Ω. Since Ω is connected,
D can only be equal to the empty set or to Ω. To show thatD is indeed relatively clopen
in Ω we remark that the continuity of u−v immediately proves relative closedness. To
show that D is open, we take any point x0 ∈ D and 0 < r < dist(x0, ∂Ω). We de�ne
two problems.

(1)

{
∆ū = 0 in Br(x0),
ū = u on ∂Br(x0)

(2)

{
∆v̄ = 0 in Br(x0),
v̄ = v on ∂Br(x0).

The existence of a solution for each of these problems is a consequence of the Poisson
formula for Ω = Br(x0). We denote these solutions by ū and v̄. Moreover, we have
u ≤ ū and v̄ ≤ v in Br(x0). Therefore,

ū− v̄ ≥ u− v in Br(x0).

Thus, {
∆(ū− v̄) = 0 in Br(x0),

ū− v̄ = u− v on ∂Br(x0).

With u−v ≤M on ∂Br(x0), by the maximum principle, we have ū− v̄ ≤M in Br(x0).
In particular,

M ≥ (ū− v̄)(x0) ≥ (u− v)(x0) = M.

Hence, (ū − v̄)(x0) = M , which implies that ū − v̄ has an interior maximum at x0.
By the strong maximum principle, ū− v̄ ≡ M in Br(x0) and thus Br(x0) ⊂ D for all
0 < r < dist(x0, ∂Ω). We conclude that D = ∅ or D = Ω. In other words either u− v
attains its maximum exclusively on ∂Ω or u−v is constant in Ω. If u−v is constant in Ω
we can directly extend the hypothesis u ≤ v on ∂Ω to Ω. If u− v attains its maximum
exclusively on ∂Ω we conclude in a similar manner that max

Ω
u−v < max

∂Ω
u−v ≤ 0.

Lemma 4.4 (Subharmonic property of a harmonic lifting). Let v ∈ C(Ω̄) be a sub-
harmonic function in Ω and B ⊂⊂ Ω a ball. Let w = v in Ω̄\B and ∆w = 0 in B.
Then w is a subharmonic in Ω and v ≤ w in Ω̄.
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Proof. The existence of such a function w is guaranteed by the Poisson formula for
Ω = B. w is smooth in B and continuous in Ω̄. We also have v ≤ w in Ω by the
de�nition of subharmonic functions . We take any B′ ⊂⊂ Ω and harmonic function
u ∈ C(B̄′) with w ≤ u on ∂B′. By v ≤ w on ∂B′, we have v ≤ u on ∂B′. v is
subharmonic and u is harmonic in B′ with v ≤ u on ∂B′. By lemma 4.3, v ≤ u in
B′. Therefore, w ≤ u in B\B′. Both w and u are harmonic in B ∩ B′ and w ≤ u on
∂(B ∩ B′). By the maximum principle, we have w ≤ u in B ∩ B′. Thus, w ≤ u in B′.
We conclude that, by de�nition, w is subharmonic in Ω.

We will attempt to solve equation (4.1). We de�ne

uϕ(x) = sup{v(x) | v ∈ C(Ω̄) is subharmonic in Ω, v ≤ ϕ on ∂Ω}. (4.2)

Our goal is to show that the function uϕ is a solution of the Dirichlet problem (4.1).
We show that uϕ, as de�ned in equation (4.2), is harmonic in Ω. Let

S = {v ∈ C(Ω̄) | v is subharmonic in Ω, v ≤ ϕ on ∂Ω}. (4.3)

For any x ∈ Ω,
uϕ(x) = sup{v(x)|v ∈ S}.

Step 1. We show that uϕ is well de�ned. Let m = min
∂Ω

ϕ and M = max
∂Ω

ϕ. We

clearly have m ∈ S and therefore S is non-empty. On the other hand, M is a constant
function and clearly harmonic in Ω with ϕ ≤M on ∂Ω. By lemma 4.3, for any v ∈ S,

v ≤M in Ω̄,

and thus uϕ is well de�ned and we have uϕ ≤M in Ω.
Step 2. We will show that S is closed for the maximum of a �nite number of

functions. Let v1, v2, ..., vk ∈ S be any �nite number of elements of S and de�ne
v := max{v1, v2, ..., vk}. v is subharmonic in Ω and therefore v ∈ S.

Step 3. We prove that uϕ is harmonic in any ball Br(x0) ⊂ Ω. By de�nition of uϕ,
the existence of a sequence of functions vi ∈ S such that

lim
i→∞

vi(x0) = uϕ(x0).

is guaranteed. We may now replace vi in the above by any ṽi ∈ S with ṽi ≥ vi since

vi(x0) ≤ ṽi(x0) ≤ uϕ(x0).

If necessary, we can replace vi by max{m, vi} ∈ S. Therefore, we can assume that

m ≤ vi ≤ uϕ in Ω. (4.4)

For a �xed Br(x0) and every vi, we de�ne wi according to the de�nition of a harmonic
lifting in lemma 4.4. Then wi = vi in Ω\Br(x0) and{

∆wi = 0 in Br(x0)

wi = vi on ∂Br(x0).
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By lemma 4.4, wi ∈ S and vi ≤ wi in Ω. Furthermore, wi is harmonic in Br(x0) and
satis�es

lim
i→∞

wi(x0) = uϕ(x0) and m ≤ wi ≤ uϕ in Ω for any i = 1, 2, ...

Since any bounded sequence of continuous functions on a compact set converges uni-
formly towards a continuous function, we know that there exists a continuous function
w towards which a subsequence of {wi} converges uniformly. We will replace {wi}
with this convergent subsequence for the sake of convenience. Thanks to the mean
value property being satis�ed by all functions wi because they are all harmonic, we
can extend this to the function w. Let y ∈ Br(x0). Then for any s small enough such
that Bs(y) ⊂ Br(x0) we have

wi(y) =
1

ωnsn−1

∫
∂Bs(y)

wi(x)dσx.

Thanks to uniform continuity on ∂Bs(y) of wi we can take the limit on both sides and
move the limit on the right-hand side inside the integral, which yields

w(y) =
1

ωnsn−1

∫
∂Bs(y)

w(x)dσx.

Thus, w is harmonic in Br(x0) and we have shown that

w ≤ uϕ in Br(x0) and w(x0) = uϕ(x0).

We now claim that uϕ = w in Br(x0). To show this, take any x̄ ∈ Br(x0) and proceed as
before, by replacing x̄ with x0. By de�nition of uϕ, there exists a sequence of {v̄i} ⊂ S
such that

lim
i→∞

v̄i(x̄) = uϕ(x̄).

As before, we can replace, if necessary, v̄i by max{v̄i, wi} ∈ S. So we may also assume
that

wi ≤ v̄i ≤ uϕ in Ω.

For a �xed Br(x0) and each v̄i, we let w̄i be the harmonic lifting in lemma 4.4. Then
w̄i ∈ S and v̄i ≤ w̄i in Ω. Moreover, w̄i is harmonic in Br(x0) and satis�es

lim
i→∞

w̄i(x̄) = uϕ(x̄) and m ≤ max{v̄i, wi} ≤ w̄i ≤ uϕ in Ω,

for any i = 1, 2, .... Using the same reasoning as before, there exists a harmonic function
w̄ in Br(x0) with a maximum attained at x0. Then, by the strong maximum principle
applied to w − w̄ in Br′(x0) for any r′ < r, we deduce that w − w̄ is constant and
thus is equal to zero. This implies that w = w̄ in Br(x0). Furthermore, we have
w(x̄) = w̄(x̄) = uϕ(x̄). Hence, w = uϕ in Br(x0) since x̄ can be any element of Br(x0).
This proves that uϕ is harmonic in Br(x0).
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Lemma 4.5. Let ϕ be a continuous function on ∂Ω and uϕ be the function de�ned in
lemma 4.3. For some x0 ∈ ∂Ω, suppose wx0 ∈ C(Ω̄) is a subhmarnoic function in Ω
such that

wx0(x0) = 0, wx0(x) < 0 for any x ∈ ∂Ω\{x0},
then

lim
x→xo

uϕ(x) = ϕ(x0).

Proof. As before, consider the set

S = {v ∈ C(Ω̄) | v is subharmonic in Ω, v ≤ ϕ on ∂Ω}.

To simplify the notation, we just write w = wx0 and set M = max
∂Ω
|ϕ|. Let ε > 0 be

arbitrary, and by continuity of ϕ at x0, there exists a δ > 0 such that

|ϕ(x)− ϕ(x0)| < ε for any x ∈ ∂Ω ∩Bδ(x0).

We then choose K suitably large such that −Kw(x) ≥ 2M for any x ∈ ∂Ω\Bδ(x0).
Thus,

|ϕ(x)− ϕ(x0)| < ε−Kw for x ∈ ∂Ω.

Since ϕ(x0)− ε+Kw(x) is a subharmonic function in Ω with ϕ(x0)− ε+Kw ≤ ϕ on
∂Ω, we have that ϕ(x0)− ε+Kw ∈ S. The de�nition of uϕ then implies that

ϕ(x0)− ε+KW ≤ uϕ in Ω.

However, ϕ(x0) + ε −Kw is super-harmonic in Ω with ϕ(x0) + ε −Kw ≥ ϕ on ∂Ω.
Thus, for any v ∈ S, we obtain from lemma 4.3

v(x) ≤ ϕ(x0) + ε−Kw(x) for x ∈ Ω. (4.5)

Again, by the de�nition of uϕ,

uϕ(x) ≤ ϕ(x0) + ε−Kw(x) for x ∈ Ω. (4.6)

Hence, equation (4.5) and equation (4.6) imply

|uϕ(x)− ϕ(x0)| < ε−Kw(x) for x ∈ Ω,

and since w is continuous with w(x)→ w(x0) = 0 as x→ x0, we arrive at

lim sup
x→x0

|uϕ(x)− ϕ(x0)| < ε.

To �nish the proof we let ε→ 0.

Remark 4.6. The existence of a function wx0 ∈ C(Ω) as required by lemma 4.5 is
not guaranteed for any domain Ω. However, it is guaranteed for any domain Ω that
satis�es the exterior sphere condition at x0 ∈ ∂Ω, meaning there exists y0 and r > 0,
such that Ω ∩ Br(y0) = ∅ and Ω ∩ Br(y0) = {x0}. In our case, we can construct wx0
using Γ.

wx0(x) = Γ(x− y0)− Γ(x0 − y0), (4.7)

for any x ∈ Ω, where Γ is the fundamental solution of the Laplace equation.
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To summarize, we have proven the following theorem.

Theorem 4.7 (Perron method existence theorem). Let Ω be a bounded domain in
Rn satisfying the exterior sphere condition at every boundary point. Then, for any
ϕ ∈ C(∂Ω), the Dirichlet problem (4.1) admits a solution u ∈ C∞(Ω) ∩ C(Ω̄).

4.2 Second order elliptic operators

Second order elliptic operators can come in divergence form or non-divergence
form. The former lend themselves naturally to the energy method and we can establish
the notion of weak solutions for them, while the latter are better approached using
maximum principles.

Let Ω be an bounded open subset of Rn, A = A(x) =
(
aij(x)

)
i,j=1...n

a n × n

matrix of functions, b = b(x) =
(
bi(x)

)
i=1...n

be a n-tuple of functions and c = c(x)
any function.

De�nition 4.8. A di�erential operator L of second order is said to be in divergence
form if

Lu := div(A(x)∇u) + b(x) · ∇u+ c(x)u, (4.8)

or in non-divergence form if it can be written as

Lu :=
n∑

i,j=1

aij(x)
∂2u

∂xixj
+ b(x) · ∇u+ c(x)u. (4.9)

Remark 4.9. So far we haven't put any restrictions on aij, bi and c. It is quite trivial
to realize that the above de�nition in the case of the divergence form only makes sense
if we impose C1 regularity on all functions

(
aij(x)

)
in the matrix A(x). Doing so also

allows us to switch between the two forms. By the de�nition of div, we have

div(A(x)∇u) =
n∑
k=1

∂(A(x)∇u)k
∂xk

=
n∑

i,j=1

aij(x)
∂2u

∂xixj
+
( n∑
j=1

∂aij(x)

∂xj

)
i
· ∇u.

(4.10)

Replacing div(A(x) · ∇u) with equation (4.10) in equation (4.8) gives us the non-
divergence form

Lu =
n∑

i,j=1

aij(x)
∂2u

∂xixj
+
( n∑
j=1

∂aij(x)

∂xj
+ bi(x)

)
i
· ∇u+ c(x)

Conversely, by C1(Ω) regularity of aij(x) we can transform equation (4.9) from non-
divergence form to divergence form. Let

b̃i(x) = bi(x)−
n∑
j=1

∂aij(x)

∂xj
,
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which gives us

Lu =
n∑

i,j=1

aij(x)
∂2u

∂xixj
+ b(x)∇u+ c(x)u

=
n∑

i,j=1

aij(x)
∂2u

∂xixj
+
( n∑
j=1

∂aij(x)

∂xj

)
i
· ∇u+ b̃(x) · ∇u+ c(x)u

= div(A(x)∇u) + b̃(x)∇u+ c(x)u.

De�nition 4.10. A linear second degree di�erential operator is uniformly elliptic if
there exist α, β > 0 such that a.e. x ∈ Ω and for all ξ ∈ Rn, the following holds.

α|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ β|ξ|2.

4.3 Sobolev spaces

So far, we focused on �nding solutions of C2 regularity. In this section we will
introduce the notion of weak derivatives, weak solutions and sobolev spaces, which
will lay the foundation for the existence result for weak solutions in a subsequent
section. For more details on Sobolev spaces, the reader may consult [6], chapter 1 and
[2], which were heavily used to develop the material presented in this section.

De�nition 4.11 (Weak derivative). Given u, v ∈ L1
loc(Ω) and a multi-index α. We

say that v is the α-th weak partial derivative of u if∫
Ω

uDαφdx = (−1)α
∫
Ω

vφdx,

for all test functions φ ∈ C∞c (Ω). We denote the weak derivative by Dαu = v.

Lemma 4.12 (Uniqueness of weak derivative). A weak α-th partial derivative of u is
uniquely de�ned up to a set of measure zero, provided that it exists.

Proof. Suppose that v, ṽ are weak derivatives of u for the same multi-index α. Then we
have

∫
Ω

(v − ṽ)φdx = 0 for all φ ∈ C∞c (Ω) and therefore v = ṽ almost everywhere. For

a detailed development of the �nal step in this proof, i.e. concluding that (v − ṽ) = 0
a.e. based on the fact that the above integral is 0 for all test functions φ you may
consult [8]. You can �nd a full development of this result there.

De�nition 4.13. We de�ne the sobolev space W k,p(Ω) for k non-negative integer and
1 ≤ p ≤ ∞ as the set of locally summable functions u : Ω → R such that for every
multi-index |α| ≤ k, the weak partial derivative Dαu exists and belongs to Lp(Ω).
Additionally we de�ne the norm as

‖u‖Wk,p(Ω) =


( ∑
|α|≤k

∫
Ω

|Dαu|pdx
)1/p

, (1 ≤ p <∞)∑
|α|≤k

ess sup |Dαu|. (p =∞)
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Remark 4.14. We consider two functions u and v belonging toW k,p(Ω) to be identical
if they are identical almost everywhere.

Theorem 4.15 (Elementary properties of weak derivative). Suppose u, v ∈ W k,p(Ω)
and |α| ≤ k. Then

i) Dαu ∈ W k−|α|,p(Ω) and Dβ(Dαu) = Dα(Dβu) = Dα+βu for all multindexes α, β
such that |α|+ |β| ≤ k.

ii) For each λ, µ ∈ R we have λu+µv ∈ W k,p(Ω) and Dα(λu+µv) = λDαu+µDβv.

iii) If O is an open subset of Ω, then u ∈ W k,p(O).

iv) if ϕ ∈ C∞c (Ω), then ϕu ∈ W k,p(Ω) and the Leibniz formula holds, i.e.

Dα(ϕu) =
∑
β≤α

(
|α|
|β|

)
DβϕDα−βu,

where (
|α|
|β|

)
=

|α|!
|β|!(|α| − |β|)!

and β is a multi-index and β ≤ α is de�ned as

β = (β1, ..., βn) ≤ (α1, .., αn) = α⇔ βi ≤ αi,

for all i = 1, ..., n.

Remark 4.16. For a full proof of theorem 4.15, the reader may consult [2], page 263.

De�nition 4.17 (Convergence). Given a sequence of functions {un}∞n=1 ⊂ W k,p(Ω)
and a function u ∈ W k,p(Ω), we say that

i) un → u in W k,p(Ω) if lim
n→∞

‖un − u‖Wk,p(Ω) = 0,

ii) un → u in W k,p
loc (Ω) if un → u in W k,p(V ) for any V ⊂⊂ Ω.

De�nition 4.18. We de�ne W k,p
O (Ω) as the closure of C∞c (Ω) in W k,p(Ω).

Theorem 4.19 (Sobolev spaces as function spaces). For every k = 1, 2, ... and
1 ≤ p ≤ ∞ the Sobolev space W k,p(Ω) is a Banach space.

Proof. Step 1. We show that ‖u‖Wk,p(Ω) is a norm. It is easy to see that
‖λu‖Wk,p(Ω) = |λ|‖u‖Wk,p(Ω) holds and by the previous remark concerning equivalency
of functions in sobolev spaces we have that ‖u‖Wk,p(Ω) = 0 if and only if u = 0 almost
everywhere. Now suppose u, v ∈ W k,p(Ω). Minkowski's inequality A.3 gives us

‖u+ v‖Wk,p(Ω) =
( ∑
|α|≤k

‖Dαu+Dαv‖pLp(Ω)

)1/p

≤
( ∑
|α|≤k

(
‖Dαu‖Lp(Ω) + ‖Dαv‖Lp(Ω)

)p)1/p

≤
( ∑
|α|≤k

‖Dαu‖pLp(Ω)

)1/p

+
( ∑
|α|≤k

‖Dαv‖pLp(Ω)

)1/p

= ‖u‖Wk,p(Ω) + ‖v‖Wk,p(Ω),
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and therefore we have successfully shown that ‖u‖Wk,p(Ω) is indeed a norm for the
sobolev space W k,p(Ω).

Step 2. The only remaining thing in need of a rigorous proof is completeness.
Suppose {un}∞n=1 is a Cauchy sequence in W k,p(Ω). It is trivial to see that this means
that {Dαun}∞n=1 is a Cauchy sequence in Lp(Ω) for any |α| ≤ k. By completeness of
Lp(Ω) there exists a function uα ∈ Lp(Ω) such that Dαun → uα in Lp(Ω). We take
some φ ∈ C∞c (Ω). Then we have∫

Ω

uDαφdx = lim
n→∞

∫
Ω

unD
αφdx = lim

n→∞
(−1)|α|

∫
Ω

Dαunφdx

= (−1)|α|
∫
Ω

uαφdx,

which means that for any u ∈ W k,p(Ω) we have Dαu = uα, with |α| ≤ k and thus
un → u in W k,p(Ω).

Remark 4.20. For any k ∈ {0, 1, 2, ...} we denote the Sobolev space W k,2
0 (Ω) by

Hk
0 (Ω). This follows from the fact thatW k,2

0 is a Hilbert space for any k ∈ {0, 1, 2, ..., }.
For more details, the reader may consult [1], chapter 8.

4.4 Weak solutions

De�nition 4.21. We de�ne the bilinear form B[·, ·] associated with the divergence
form elliptic operator L (4.8) as follows:

B[u, v] :=

∫
Ω

( n∑
i,j=1

aijuxivxj +
n∑
i=1

biuxiv + cuv
)
dx.

De�nition 4.22 (Weak solution of an Elliptic Operator). A function u ∈ H1
0 (Ω) is

called a weak solution of equation (4.8) if

B[u, v] = (f, v) for all v ∈ H1
0 (Ω),

where B[·, ·] is the bilinear form

B[u, v] :=

∫
Ω

n∑
i,j=1

aij(x)
∂u

∂xi

∂v

∂xj
+

n∑
i=1

bi(x)
∂u

∂xj
v + c(x)uv.

4.5 Existence of weak solutions

In this section, we will use the Lax-Milgram theorem to show that there exists a
unique weak solution to the following Dirichlet boundary value problem. This chapter is
based on the lectures held by Professor Radulescu [7]. In addition to the aforementioned
lecture notes, the author made use of [2] to address gaps in his understanding of the
material presented in this section.{

Lu+ µu = f in Ω,

u = 0 on ∂Ω.
(4.11)
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Remark 4.23. As we will see later, the choice of µ is not arbitrary. As part of proving
the existence of a unique weak solution to the above problem, we will also clarify the
choice of µ.

4.5.1 Lax-Milgram theorem

Theorem 4.24 (Lax-Milgram). Let H be a Hilbert space with an inner-product induced
norm ‖ · ‖ and let B : H ×H → R be a bilinear form. If there exist α, β > 0 such that
for every u, v ∈ H we have

i) Boundedness: |B[u, v]| ≤ α‖u‖‖v‖,

ii) Coercivity: β‖u‖2 ≤ B[u, u],

then for any f ∈ H ′ there exists a unique u ∈ H such that

B[u, v] = (f, v) for all v ∈ H,

where (·, ·) is the inner-product associated with H and H ′ is the dual of H.

Proof. Existence. Taking a �xed w ∈ H means that v 7→ B[w, v] is a bounded linear
functional on H. By the Riesz representation theorem A.13, there exists a unique
u ∈ H such that (u, v) = B[w, v] for all v ∈ H, where (·, ·) is the inner product of H.
Let us now de�ne an operator A : H → H, A[w] := u. We show that A is a bounded
linear operator. To show linearity, we note that

(A[λ1u1 + λ2u2], v) = B[λ1u1 + λ2u2, v] = λ1B[u1, v] + λ2B[u2, v]

= (λ1A[u1] + λ2A[u2], v) for all v ∈ H,

which means that A[λ1u1 +λ2u2] = λ1A[u1] +λ2A[u2]. To show boundedness, we note
that

‖Au‖2 = (Au,Au) = B[Au, u] ≤ α‖u‖ · ‖Au‖,
and thus ‖Au‖ ≤ α‖u‖. Furthermore range(A) is closed in H. Let {yk} be a con-
vergent sequence in range(A) so that there exists a sequence {uk} ⊂ H for which
yk = A[uk] → y ∈ H. By coercivity we have ‖uk − uj‖ ≤ β‖A[uk] − A[uj]‖, which
implies that {uk} is a Cauchy sequence in H. Therefore uk converges to some element
u ∈ H and y = A[u] and thus we conclude that y ∈ range(A). Therefore range(A)
is closed in H. Suppose that range(A) 6= H. That means that we can express H as
H = range(A)⊕range(A)⊥. Let z ∈ range(A) be a non-zero element. By the coercivity
condition we have β‖z‖2 ≤ B[z, z] = (Az, z) = 0, which is a contradiction. The Riesz
representation theorem A.13 implies that for each ϕ ∈ H ′ there exists an element
z ∈ H for which ϕ(v) = (z, v) for all v ∈ H. This means that we can �nd a u such
that z = A[u], meaning (z, v) = (Au, v) = B[u, v] for all v ∈ H. This means that we've
found an element u ∈ H for which B[u, v] = (f, v) for all v ∈ H.

Uniqueness. Suppose u1, u2 both satisfy B[u1, v] = B[u2, v] = (f, v) for all v ∈ H.
Therefore, B[u1 − u2, v] = 0 for all v ∈ H. By coercivity of the bilinear form B we
have β‖u1 − u2‖2 ≤ B[u1 − u2, u1 − u2] = 0 and thus u1 = u2.
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Theorem 4.25 (Energy estimates). There exist constants α, β, γ > 0, such that

i) |B[u, v]| ≤ α‖u‖H‖v‖H ,

ii) β‖u‖2
H ≤ B[u, u] + γ‖u‖2

L2(Ω) for all u, v ∈ H.

Proof. To prove the �rst claim of the theorem we start out by establishing a boundary
for |B[u, v]|.

|B[u, v]| =
∣∣∣ ∫

Ω

n∑
i,j=1

aij(x)uxivxj +
n∑
i=1

bi(x)uxiv + cuvdx
∣∣∣

≤
n∑

i,j=1

‖aij‖L∞
∫
Ω

|Du ·Dv|dx

+
n∑
i=1

‖bi‖L∞
∫
Ω

|Du||v|dx

+ ‖c‖L∞
∫
Ω

u2dx,

(4.12)

where we justify the inequality by the fact that aij, bi, c are by hypothesis in L∞(Ω).
Using the Hölder inequality A.2 as many times as required and by the de�nition of
the norm associated with H we arrive at

|B[u, v]| ≤ C‖u‖H‖v‖H ,

where C is a constant.
To prove the second claim of the theorem, we use the de�nition of ellipticity. There

exists λ > 0, such that

λ

∫
Ω

|Du|2dx ≤
∫
Ω

n∑
i,j=1

aij(x)uxiuxjdx

= B[u, u]−
∫
Ω

n∑
i=1

bi(x)uxiu+ cu2dx

≤ B[u, u] +
n∑
i=1

‖bi‖L∞
∫
Ω

|Du||u|dx+ ‖c‖L∞
∫
Ω

u2dx.

(4.13)

For any ε > 0 and x, y we have

xy ≤ εx2 +
y2

4ε
,

since

0 ≤ (
√
εx− y

2
√
ε

)2 ⇔ xy ≤ εx2 +
y2

4ε
.
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Using this simple fact, we have

|Du||u| ≤ ε|Du|2 +
u2

4ε
⇒
∫
Ω

|Du||u|dx ≤ ε

∫
Ω

|Du|2dx+
1

4ε

∫
Ω

u2dx.

Choosing ε > 0 such that ε
n∑
i=1

‖bi‖L∞ < λ
2
and putting this into equation (4.13) yields

λ

∫
Ω

|Du|2dx ≤ B[u, u] +
( n∑
i=1

‖bi‖L∞
)(
ε

∫
Ω

|Du|2dx+
1

4ε

∫
Ω

u2dx
)

+ ‖c‖L∞
∫
Ω

u2dx

≤ B[u, u] +
λ

2

∫
Ω

|Du|2dx+
1

4ε

( n∑
i=1

‖bi‖L∞
)

+ ‖c‖L∞
∫
Ω

u2dx.

A simple rearrangement of terms and adding λ
2

∫
Ω

|u|2dx to both sides of the inequality,

results in
λ

2
‖u‖2

H ≤ B[u, u] + (C + λ
2
)‖u‖2

L2(Ω).

Theorem 4.26 (First existence theorem for weak solutions using the Lax-Milgram
theorem). There exists a number γ ≥ 0 such that for each µ ≥ γ and each function
f ∈ L2(Ω), there exists a unique weak solution u ∈ H = H2

0 (Ω) of the following
Dirichlet boundary value problem:{

Lu+ µu = f in Ω,

u = 0 on ∂Ω.

Proof. Let γ be the constant from theorem 4.25. We choose µ ≥ γ and de�ne the bilin-
ear form Bµ[u, v] := B[u, v]+µ(u, v)L2 , for any u, v ∈ H. We will show that this bilinear
form satis�es the hypothesis of the Lax-Milgram theorem 4.24. By theorem 4.25 and
the Cauchy-Schwarz inequality A.1 we have

|Bµ[u, v]| = |B[u, v] + µ(u, v)L2| ≤ |B[u, v]|+ µ|(u, v)L2|
≤ C‖u‖H‖v‖H + µ‖u‖L2‖v‖L2 .

(4.14)

Since H = H2
0 (Ω) = W 2,2

0 (Ω), we have

‖u‖H(Ω) =
( ∑
|α|≤2

∫
Ω

|Dαu|2dx
)1/2

=
(
‖u‖2

L2 +
∑

1≤|α|≤2

∫
Ω

|Dαu|2dx
) 1

2
.
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We can rewrite equation (4.14) by using the fact that the square root is concave:

|Bµ[u, v]| ≤ C‖u‖H‖v‖H + µ‖u‖L2‖v‖L2

=
[
C2
(
‖u‖2

L2 +
2∑
|α|=1

‖Dαu‖2
L2

)(
‖v‖2

L2 +
2∑
|α|=1

‖Dαv‖2
L2

)] 1
2

+
[
µ2(‖u‖2

L2‖v‖2
L2)
] 1

2

≤
[(
C2 + 2µ2

)(
‖u‖2

L2 +
2∑
|α|=1

‖Dαu‖2
L2

)(
‖v‖2

L2 +
2∑
|α|=1

‖Dαv‖2
L2

)] 1
2

≤ (C2 + µ2)
1
2‖u‖H‖v‖H .

Using the second bound from theorem 4.25, we �nd that

Bµ[u, u] = B[u, u] + µ(u, u)L2 ≥ B[u, u] + ‖u‖2
L2 ≥ β‖u‖H ,

which establishes coercivity. Let f be a function in L2(Ω) and de�ne ϕf (v) = (f, v)L2 .
Using the Cauchy-Schwarz inequality A.1 we show that ϕf is a bounded linear func-
tional.

|ϕf (v)| = |(f, v)L2| ≤ ‖f‖L2‖v‖L2 ≤ ‖f‖L2‖v‖H .
We established coercivity and boundedness of the bilinear form Bµ and showed that
the linear functional ϕf is bounded. Therefore, having ful�lled the hypothesis of the
Lax-Milgram theorem 4.24 we conclude that there exists a unique function u ∈ H
such that Bµ[u, v] = ϕf (v) for all v ∈ H. In other words, there exists a unique weak
solution u ∈ H to the Dirichlet boundary value problem (4.11).

A Elementary results

Theorem A.1 (Cauchy-Schwarz inequality). Let (V, (·, ·)) be an inner product space.
Then |(u, v)|2 ≤ (u, u) · (v, v) holds for all u, v ∈ V , where (·, ·) denotes the inner
product of V .

Theorem A.2 (Hölder inequality). Let p, q ∈ [1,∞], such that 1
p

+ 1
q

= 1 and Ω ⊂ Rn.

For any two functions f ∈ Lp(Ω) and g ∈ Lq(Ω), we have fg ∈ L1(Ω) and additionally
the inequality ‖fg‖L1(Ω) ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω) holds.

Theorem A.3 (Minkowski inequality). Let f and g be two functions such that f, g ∈
Lp(Ω), where Ω ⊂ Rn and 1 ≤ p ≤ ∞. Then we have f + g ∈ Lp(Ω) and the inequality
‖f + g‖Lp(Ω) ≤ ‖f‖Lp(Ω) + ‖g‖Lp(Ω) holds.

Remark A.4. For more information on the Hölder inequality and the Minkowski
inequality, the reader may consult [9], chapter 1.

Theorem A.5 (Fubini's theorem). Let X and Y be two σ-�nite measure spaces and
f : X × Y → R a function that is X × Y integrable. Then∫

X

(∫
Y

f(x, y)dy
)
dx =

∫
Y

(∫
X

f(x, y)dx
)
dy =

∫
X×Y

f(x, y)d(x, y).
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Remark A.6. For more details, the reader may consult [10], page 75.

Theorem A.7 (Green's formulas). Let Ω be a bounded open subset of Rn with C1

boundary and u, v ∈ C2(Ω̄). Then

i)
∫
Ω

∆udx =
∫
∂Ω

∂u
∂ν
dσ,

ii)
∫
Ω

Dv ·Dudx = −
∫
Ω

u∆vdx+
∫
∂Ω

∂v
∂ν
udσ,

iii)
∫
Ω

u∆v − v∆udx =
∫
∂Ω

u∂v
∂ν
− v ∂u

∂ν
dσ.

Remark A.8. For more details, the reader may consult [2], page 715.

Theorem A.9 (Gauss divergence theorem). Given a compact subset V of Rn having
a piecewise smooth boundary S and a continuously di�erentiable vector �eld F , that is
de�ned in a neighbourhood of V , we have:

y

V

(∇ · F)dV =
{

S

(F · n)dS.

Remark A.10. For more details, the reader may consult [4], page 60, for a very
general version of the Stokes theorem.

Theorem A.11 (Lebesgue di�erentiation theorem). For a Lebesgue integrable func-
tion, i.e. f ∈ L1(Rn), we have

lim
r→0+

1

λ(B(x, r))

∫
B(x,r)

|f(t)− f(x)|dλ(t) = 0 for almost all x ∈ Rn,

where B(x, r) is a ball in Rn of radius r, centered in x and λ is the Lebesgue measure.

Remark A.12. For more details, the reader may consult [10], page 104.

Theorem A.13 (Riesz representation theorem). Let H be a Hilbert space and ϕ a
continuous linear functional, i.e. ϕ ∈ H ′, where H ′ is the dual space of H. Then there
exists f ∈ H such that for any x ∈ H, ϕ(x) = (f, x) and ‖f‖H = ‖ϕ‖H′, where (·, ·)
denotes the inner product of the H.

Remark A.14. For more details, the reader may consult [1], page 97.

Lemma A.15 (Boundary of connected components). For any connected component
V of a set Ω ⊂ Rn, we have ∂V ⊂ ∂Ω.

Proof. Let x be any element of V ∩ int(Ω). Since Rn is locally connected, there exists a
connected neighbourhood of x in int(Ω), i.e. there exists Ux ⊂ int(Ω) such that x ∈ Ux.
Since Ux and V are connected sets and are non-disjoint, their union must be connected.
Suppose that Ux is not a subset of V . This implies that V is not a maximally connected
subset of Ω, which is in direct contradiction with the assumption that V is a connected
component of Ω. Therefore, x ∈ Ux ⊂ V and V is relatively open in Ω. V is a connected
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component and therefore relatively closed in Ω. Thus, int(V ) = V = V ∩ int(Ω). Since
x ∈ V ∩ int(Ω)⇒ x ∈ int(V ), we can show that ∂V ⊂ ∂Ω as follows:

∂V = V \int(V ) ⊂ V \int(Ω) = Ω\int(Ω) = ∂Ω.

More information on connected components, their properties and the notion of
connectedness can be found in [5], page 157.
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