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Our aim is to work towards a proof of the de Rham theorem. We will assume that the
reader has some basic knowledge of sheaves and sheaf cohomology.
The development in this document follows the lecture notes of a course titled ”Basic

Sheaf Theory” given by Professor Kucharz at Jagiellonian University in the Fall 2020.
During this course, Professor Kucharz made a passing remark that with what has been
shown during the course, it should be trivial to show de Rham’s theorem. The aim of
this work is to put together the relevant pieces to get a proof of de Rham’s theorem.

Definition 1. A sheaf F on 𝑋 is said to be acyclic if 𝐻𝑞 (𝑋, F ) = 0 for all 𝑞 ≥ 1.

Definition 2. A sheaf F on 𝑋 is said to be flabby if the restriction morphism 𝐹 (𝑋) →
𝐹 (𝑈) is surjective for any 𝑈 ⊂ 𝑋 open.

Definition 3. A resolution of a sheaf F on a topological space 𝑋 is an exact sequence
0 → F → F 0 → F 1 → . . . of sheaves on 𝑋.

Definition 4. We define the sheaf R as the sheafification of the constant presheaf R,
which assigns to each open set 𝑈, the set R and whose restriction maps are given by the
identity function.

Theorem 5

Let

0 → F 𝑖→ F 0 𝜑0

→ F 1 𝜑1

→ F 2 𝜑2

→ . . .

be an acyclic resolution of a sheaf F on 𝑋, that is to say that F 𝑝 is acyclic for any
𝑝 ≥ 0. Then the cohomology group 𝐻𝑘 (𝑋, F ) is isomorphic to the 𝑘-th cohomology
group of the cochain complex

. . . → 0 → Γ(𝑋, F 0)
Γ (𝜑0)
→ Γ(𝑋, F 1)

Γ (𝜑1)
→ Γ(𝑋, F 2)

Γ (𝜑2)
→ . . .

of Abelian groups. That is,

𝐻0(𝑋, F ) ≃ ker Γ(𝜑0),
𝐻𝑘 (𝑋, F ) ≃ ker Γ(𝜑𝑘)/im Γ(𝜑𝑘−1) for 𝑘 ≥ 1.

Proof. The sequence of sheaves 0 → F → F 0 → F 1 is exact, thus so is the sequence
of groups 0 → Γ(𝑋, F ) → Γ(𝑋, F 0) → Γ(𝑋, F 1). This implies 𝐻0(𝑋, F ) = Γ(𝑋, F ) ≃
ker Γ(𝜑0).
Suppose now that 𝑘 ≥ 1. For the subsheaf G := im 𝜑0 = ker 𝜑1 of F 1, we have the

following two exact sequences.

0 → F → F 0 𝜓
→ G → 0,

0 → G ↩−→ F 1 → F 2 → . . . ,

where 𝜓 is induced by 𝜑0 and G ↩−→ F 1 is the inclusion. The first exact sequences implies
that

Γ(𝑋, F 0)
Γ (𝜓)
→ Γ(𝑋,G) → 𝐻1(𝑋, F ) → 𝐻1(𝑋, F 0) = 0

is exact and therefore 𝐻1(𝑋, F ) ≃ Γ(𝑋,G)/im Γ(𝜓). By the second exact sequence, 0 →
Γ(𝑋,G) ↩−→ Γ(𝑋, F 1)

Γ (𝜑1)
→ Γ(𝑋, F 2) is exact, so Γ(𝑋,G) = ker Γ(𝜑1). Since G = im 𝜑0,

we have im Γ(𝜓) = im Γ(𝜑0). Thus 𝐻1(𝑋, F ) ≃ ker Γ(𝜑1)/im Γ(𝜑0).
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For 𝑘 ≥ 2, the first exact sequence yields another exact sequence 0 = 𝐻𝑘−1(𝑋, F 0) →
𝐻𝑘−1(𝑋,G) → 𝐻𝑘 (𝑋, F ) → 𝐻𝑘 (𝑋, F 0) = 0, thus 𝐻𝑘−1(𝑋,G) ≃ 𝐻𝑘 (𝑋, F ). We proceed
by induction on 𝑘. The second exact sequence yields 𝐻𝑘−1(𝑋,G) ≃ ker Γ(𝜑𝑘)/im Γ(𝜑𝑘−1)
and we are done by virtue of the two isomorphisms that we have established. ■

Proposition 6

Let 0 → E → F → G be an exact sequence of sheaves on 𝑋. Then, for an arbitrary

subset 𝐴 of 𝑋, the induced sequence 0 → Γ(𝐴, E)
Γ (𝐴,𝜑)
→ Γ(𝐴, F )

Γ (𝐴,𝜓)
→ Γ(𝐴,G) is

exact.

Proposition 7

Let F be a sheaf on 𝑋 and 𝑠 ∈ Γ(𝐴, F ). Suppose that 𝑋 is paracompact. Then there
exists an open neighborhood 𝑈 ⊂ 𝑋 of 𝐴 and a section 𝑡 ∈ Γ(𝑈, F ) such that 𝑡 |𝐴 = 𝑠.

Definition 8. A sheaf F on a topological space 𝑋 is called soft if for each closed subset
𝐴 of 𝑋 the restriction morphism Γ(𝑋, F ) → Γ(𝐴, F ), 𝑠 ↦→ 𝑠 |𝐴 is surjective.

Theorem 9

Assume that 𝑋 is a paracompact topological space. Then each flabby sheaf F on 𝑋

is soft.

Proof. Let 𝐴 be a closed subset of 𝑋 and 𝑠 ∈ Γ(𝐴, F ). By Proposition 7 there exists an
open neighborhood 𝑈 ⊂ 𝑋 such that 𝑠 is in the image of Γ(𝑈, F ) → Γ(𝐴, F ). Since F is
flabby, Γ(𝑋, F ) → Γ(𝑈, F ) is surjective. ■

Theorem 10

Assume that 𝑋 is paracompact. Let 0 → E
𝜑
→ F

𝜓
→ G → 0 be a short exact sequence

with E soft. Then 0 → Γ(𝑋, E)
Γ (𝜛)
→ Γ(𝑋, F )

Γ (𝜓)
→ Γ(𝑋,G) → 0 is exact.

Proof. It suffices to show that Γ(𝜓) is surjective. Let 𝑡 ∈ Γ(𝑋,G). Since 𝜓 : F → G is
surjective, there is an open cover {𝑈𝑖}𝑖∈𝐼 of 𝑋 and sections {𝑠𝑖 ∈ Γ(𝑈𝑖 , F )}𝑖∈𝐼 such that
𝜓(𝑠𝑖) = 𝑡 |𝑈𝑖

. Since 𝑋 is paracompact, the open cover can be assumed to be locally finite.
Thus there is an open cover {𝑉𝑖}𝑖∈𝐼 of 𝑋 such that 𝑉𝑖 ⊂ 𝑈𝑖 for all 𝑖 ∈ 𝐼. Consider the set
X of all pairs (𝐴, 𝑠) where 𝐴 is a subset of 𝑋 that is the union of 𝑉𝑖-s and 𝑠 ∈ Γ(𝐴, F )
such that 𝜓(𝑠) = 𝑡 |𝐴. 𝐴 is closed, X is non-empty and partially ordered under the relation
(𝐴1, 𝑠1) ≤ (𝐴2, 𝑠2) if 𝐴1 ⊂ 𝐴2 and 𝑠1 = 𝑠2 |𝐴1 and X has an upper bound in X. Using
Zorn’s lemma we find a maximal element (𝐴, 𝑠). If 𝐴 = 𝑋, we are done. Otherwise, there
is 𝑖0 ∈ 𝐼 such that 𝑉𝑖0 is not contained in 𝐴. By construction, 𝜓(𝑠 |𝐴∩𝑉𝑖0

− 𝑠𝑖0 |𝐴∩𝑉𝑖0
) = 0.

By Proposition 6, the induced sequence of Abelian groups

0 → Γ(𝐴 ∩𝑉𝑖0 , E) → Γ(𝐴 ∩𝑉𝑖0 , F ) → Γ(𝐴 ∩𝑉𝑖0 ,G)

is exact, there exists a section 𝑢0 ∈ Γ(𝐴∩𝑉𝑖0 , E) with 𝑢 |𝐴∩𝑉𝑖0
= 𝑢0. Then the section 𝑠 and

𝑠𝑖0 |𝑉𝑖0
+ 𝜑(𝑢) |𝑉𝑖0

agree on 𝐴 ∩𝑉𝑖0 and hence they define a section 𝑠′ ∈ Γ(𝐴 ∩𝑉𝑖0 , F ) with
𝑠′ |𝐴 = 𝑠. But this contradicts the maximality of (𝐴, 𝑠), thus we have a contradiction. ■
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Theorem 11

Suppose that 𝑋 is paracompact. Let 0 → E → F → G → 0 be exact. Let E and F
be soft sheaves. Then G is soft.

Proof.

0 Γ(𝑋, E) Γ(𝑋, F ) Γ(𝑋,G) 0

0 Γ(𝐴, E) Γ(𝐴, F ) Γ(𝐴,G) 0

is commutative. By Theorem 10 the first row is exact. The second row is exact by
a similar reasoning. The middle vertical morphism is surjective since F is soft. Thus
Γ(𝑋,G) → Γ(𝐴,G) is surjective. Thus G is soft since 𝐴 is arbitrary. ■

Theorem 12

Let 𝑋 be a paracompact topological space. Then each soft sheaf F on 𝑋 is acyclic.

Proof. Let F = DF/F be the quotient sheaf. We have a canonical short exact sequence
0 → F → DF → F → 0. We know that DF is flabby, thus soft by Theorem
9. Hence F is soft by Theorem 11. By Theorem 10, the induced sequence 0 →
Γ(𝑋, F ) → Γ(𝑋,DF → Γ(𝑋, F ) → 0 is exact. On the other hand, 0 → Γ(𝑋, F ) →
Γ(𝑋,DF ) → Γ(𝑋, F ) → 𝐻1(𝑋, F ) → 0 is exact. Therefore 𝐻1(𝑋, F ) = 0. If 𝑞 > 0,
then 0 → 𝐻𝑞 (𝑋, F ) → 𝐻𝑞+1(𝑋, F ) → 0 is exact. By induction we find 𝐻𝑘 (𝑋, F ) = 0 for
𝑘 ≥ 2. ■

Definition 13. A sheaf F on 𝑋 is fine if for every locally finite open cover U = {𝑈𝑖}𝑖∈𝐼
if 𝑋 there exists a collection of morphisms {𝜑𝑖 : F → F }𝑖∈𝐼 such that

1. For every 𝑖 ∈ 𝐼 there exists a closed subset 𝐴𝑖 of 𝑋 such that 𝐴𝑖 ⊂ 𝑈𝑖 and (𝜑𝑖)𝑥 = 0
for all 𝑥 ∈ 𝑋 \ 𝐴𝑖.

2.
∑
𝑖∈𝐼

(𝜑𝑖)𝑥 = idF𝑥
for all 𝑥 ∈ 𝑋.

Theorem 14

Assume that 𝑋 is a paracompact topological space and let F be a fine sheaf on 𝑋.
Then F is a soft sheaf.

Proof. Let 𝐴 be closed and let 𝑠 ∈ Γ(𝐴, F ). There exists a locally finite open cover of 𝑋
and a collection of sections such that 𝑠𝑖 |𝐴∩𝑈𝑖

= 𝑠 |𝐴∩𝑈𝑖
for all 𝑖 ∈ 𝐼. Let 𝜑 be the collection

of morphisms from the definition of a fine sheaf. By the definition we have 𝐴𝑖 such
that 𝐴𝑖 ⊂ 𝑈𝑖 and (𝜑𝑖)𝑥 = 0 for 𝑥 ∈ 𝑋 \ 𝐴𝑖. Thus 𝜑𝑖 (𝑠𝑖) = Γ(𝑈𝑖 , 𝜑𝑖) (𝑠𝑖) ∈ Γ(𝑈𝑖 , F ) is the

restriction of global sections 𝑡𝑖 ∈ Γ(𝑋, F ) defined by 𝑡𝑖 (𝑥) =
{
(𝜑𝑖)𝑥 ((𝑠𝑖)𝑥) for 𝑥 ∈ 𝑈𝑖 ,

0 for 𝑥 ∈ 𝑋 \ 𝐴𝑖 .

By construction 𝑡 =
∑
𝑖∈𝐼

𝑡𝑖 is a well-defined section in Γ(𝑋, F ) with 𝑡 |𝐴 = 𝑠. Therefore F is

a soft sheaf. ■
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Definition 15. Let A be a sheaf of commutative rings with 1 on a topological space 𝑋.
A sheaf F of Abelian groups on 𝑋 is a sheaf of A-modules if for every open set 𝑈 ⊂ 𝑋

the group F (𝑈) has an A(𝑈)-module structure and for all 𝑉 ⊂ 𝑈, the restriction map
F (𝑈) → F (𝑉) is compatible with the module structure.

Definition 16. Let A be a sheaf of rings and let F be a sheaf of A-modules on a
topological space 𝑋. We say that F is a fine sheaf of A-modules if F is a fine sheaf when
regarded as a sheaf of Abelian groups.

Proposition 17

Let A be a sheaf of rings (commutative with 1) and let F be a sheaf of A-modules
on a topological space 𝑋. Assume that A is a fine sheaf. Then so is F .

Proof. Let {𝑈𝑖}𝑖∈𝐼 be a locally finite open cover of 𝑋. A is a fine sheaf, so we have
morphisms of sheaves of Abelian groups 𝜑𝑖 : A → A for 𝑖 ∈ 𝐼 and closed subsets 𝐴𝑖

of 𝑋 such that 𝐴𝑖 ⊂ 𝑈𝑖 for all 𝑖 ∈ 𝐼, (𝜑𝑖)𝑥 = 0 for any 𝑥 ∈ 𝑋 \ 𝐴𝑖 and
∑
𝑖∈𝐼

(𝜑𝑖)𝑥 = idA𝑥

for all 𝑥 ∈ 𝑋. Let 𝜓𝑖 : F → F be as follows. If 𝑈 ⊂ 𝑋 is open and 𝑠 ∈ F (𝑈), then
(𝜓𝑖)𝑈 (𝑠) := (𝜑𝑖)𝑈 (1)𝑠, where 1 ∈ A(𝑈). By construction, (𝜓𝑖)𝑥 = 0 for all 𝑥 ∈ 𝑋 \ 𝐴𝑖 and∑
𝑖∈𝐼

(𝜓𝑖)𝑥 = idF𝑥
for all 𝑥 ∈ 𝑋. Thus F is a soft sheaf. ■

Theorem 18

Let 𝑋 be a 𝐶∞ manifold. Then for each non-negative integer 𝑝 the sheaf A 𝑝

𝑋
of

differential forms of order 𝑝 on 𝑋 is fine.

Proof. For each open cover of 𝑋 there exists a 𝐶∞ partition of unity subordinate to the
cover. By Proposition 17, A 𝑝

𝑋
is a fine sheaf. ■

Corollary 19

With the notation as in Theorem 18, A 𝑝

𝑋
is an acyclic sheaf.

Proof. Follows from Theorems 18, 12 and 14. ■

Theorem 20

Let 𝑋 be a 𝐶∞ manifold. Then there is a canonical resolution for the constant sheaf
R on 𝑋

0 → R 𝜖→ A0
𝑋

𝑑→ A1
𝑋

𝑑→ A2
𝑋

𝑑→ . . . ,

where 𝜖 : R→ A0
𝑋
is the canonical embedding and 𝑑 : A 𝑝

𝑋
→ A 𝑝+1

𝑋
is the exterior

differentiation.

Proof. The theorem follows from the exactness of the sequence of sheaves in the statement.
Since this is a local problem, the assertion follows from the Poincare lemma. ■
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Theorem 21 (de Rham theorem)

Let 𝑋 be a 𝐶∞ manifold. For each integer 𝑞, the cohomology group 𝐻𝑞 (𝑋,R) is
isomorphic to the 𝑞-th cohomology group of the cochain complex

. . . → 0 → A0
𝑋 (𝑋)

𝑑→ A1
𝑋 (𝑋)

𝑑→ A2
𝑋 (𝑋)

𝑑→ . . .

Proof. By Corollary 19 and Theorem 20, the constant sheaf R on 𝑋 admits an acyclic
resolution

0 → R 𝜖→ A0
𝑋

𝑑→ A1
𝑋

𝑑→ . . . .

Hence the conclusion follows from Theorem 5, since A 𝑝

𝑋
(𝑋) is the same as Γ(𝑋,A 𝑝

𝑋
), i.e.

the global sections of the sheaf A 𝑝

𝑋
. ■


