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Motivation for∞-categories

Let us recall some basic notions from Algebraic topology.

Let X be a topological space.
• We can associate the set π0(X ) of path components of X to the

topological space X .
• We can associate the fundamental group π1(X , x) of X to the

topological space X with a given based point x ∈ X .
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Motivation for∞-categories

We can combine the set π0(X ) and the fundamental groups
{π1(X , x)}x∈X into a single object.

To any space topological space X we can associate an invariant π≤1(X )
called the fundamental groupoid of X .
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Motivation for∞-categories

The fundamental groupoid is the category whose objects are the points
of X , where a morphism from a point x ∈ X to a point y ∈ Y is given
by a homotopy class of continuous paths p : [0, 1]→ X with p(0) = x
and p(1) = y .

We recover π0(X ) as the set of isomorphism classes of objects of the
category π≤1(X ).
Each fundamental group π(X , x) can be identified with the
automorphism group of the point x as an object of the category π≤(X ).
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Motivation for∞-categories

Question: ”Can we find a ’category-theoretic’ invariant of X which
contains information about all the homotopy groups?”
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Motivation for∞-categories

We will answer this question to a satisfying extent when we introduce
simplicial sets and in particular the singular simplical set Sing•(X ) of X .
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Motivation for∞-categories

But to what extent does Sing•(X ) behave like a category?
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Motivation for∞-categories

To give an answer to this question, we will slowly build up to a notion of
∞-categories.
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Motivation for∞-categories

Informally, we can think of the theory of ∞-categories as an attempt at
bringing together categories and homotopy theory into a single
framework.
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Simplicial Sets

Simplex category
We define a category ∆ as follows:

• The objects of ∆ are linearly ordered sets of the form [n] for n ≥ 0.
• A morphism from [m] to [n] in the category ∆ is a function
α : [m]→ [n] which is nondecreasing: that is, for each
0 ≤ i ≤ j ≤ m, we have 0 ≤ α(i) ≤ α(j) ≤ n.

We will refer to ∆ as the simplex category.
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Simplicial Sets

Simplicial Object
Let C be any category. A simplicial object of C is a functor ∆op → C .

Dually, a cosimplicial object of C is a functor ∆→ C .
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Simplicial Sets

Definition: Simplicial set

A simplicial set is a functor ∆op → Set from the simplex category to the
category of sets.
In other words, a simplicial set is a presheaf over the simplex category ∆.
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Simplicial Sets

Definition: Category of simplicial sets
Since simplicial sets are defined as functors, we have a functor category
Fun(∆op, Set), which we call the category of simplicial sets and denote
by Set∆.
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Simplicial Sets

Since any simplicial set S• is a functor from ∆op → Set, we will write Sn
for the value of the functor S• on the object [n] ∈ ∆.
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Simplicial Sets

Definition: Face map
Let n be a positive integer. For 0 ≤ i ≤ n, we let δi : [n − 1]→ [n]
denote the unique strictly increasing function whose image does not
contain the element i , i.e.

δi (j) =
{

j if j < i
j + 1 if j ≥ i .

If C• is a simplicial object of a category C , then we can evaluate C• on
the morphism δi to obtain a morphism from Cn to Cn−1. We will denote
this map by di : Cn → Cn−1 and we call it the ith face map.
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Simplicial Sets

Definition: Degeneracy map
Let n be a positive integer. For 0 ≤ i ≤ n, we let σi : [n + 1]→ [n]
denote the unique strictly increasing function whose image does not
contain the element i , i.e.

σi (j) =
{

j if j ≤ i
j + 1 if j > i .

If C• is a simplicial object of a category C , then we can evaluate C• on
the morphism σi to obtain a morphism from Cn to Cn−1. We will denote
this map by si : Cn → Cn−1 and we call it the ith degeneracy map.
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Simplicial Sets

Definition: Standard n-simplex
For n ≥ 0, we let ∆n denote the simplicial set given by

([m] ∈ ∆) 7→ Hom∆([m], [n]).

This is the standard n-simplex and we extend to the case n = −1 by
setting ∆−1 = ∅.
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Simplicial Sets

The standard n-simplex ∆n as defined above is indeed a functor from
∆op to Set, since HomC (·, a) : C → Set is a contravariant functor for
any object a ∈ C .

By the Yoneda lemma, we have the following universal property for the
standard n-simplex ∆n: For every simplicial set X•, we have a bijection

HomSet∆(∆n,X•) ' Xn.

This fact allows us to identify n-simplices of X• with maps of simplicial
sets σ : ∆n → X•.
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Simplicial Sets

Definition: Simplicial subset of a simplicial set
Let S• be a simplicial set. Suppose that for every integer n ≥ 0 we have
a subset Tn ⊆ Sn such that the face and degeneracy maps
di : Sn → Sn−1 and si : Sn → Sn+1 sends Tn into Tn−1 and Tn+1,
respectively.

Then the collection {Tn}n≥0 inherits the structure of a simplicial set T•
and in this case we say that T• is a simplicial subset of S• and we can
make use of the notation T• ⊆ S•.
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Simplicial Sets

Definition: Boundary of ∆n

For n ≥ 0, we define a simplicial set (∂∆n) : ∆op → Set by the formula

(∂∆n)([m]) = {α ∈ Hom∆([m], [n]) : α is not surjective}.

We can regard ∂∆n as a simplicial subset of the standard n-simplex ∆n.
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Simplicial Sets

We denote by |∆n| the topological simplex of dimension n, i.e.

|∆n| := {(t0, . . . , tn) ∈ [0, 1]n+1 : t0 + t1 + . . .+ tn = 1}.
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Simplicial Sets

We can also introduce the notion of connected components for simplicial
sets.
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Simplicial Sets

Definition: Summand of a simplicial set
Let S• be a simplicial set and let S ′• ⊆ S• be a simplicial subset of S•. S ′•
is a summand of S• decomposes as a coproduct S ′• t S ′′• , for some other
simplicial subset S ′′• ⊆ S•.
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Simplicial Sets

Definition: Connected simplicial set
Let S• be a simplicial set. S• is connected it is non-empty and every
summand S ′• ⊆ S• is either empty or coincides with S•.

Timo Rohner (UJ) Kan Complexes November 18, 2020 25 / 83



Simplicial Sets

Definition: Connected Components of a simplicial set
Let S• be a simplicial set. We will say that a simplicial subset S ′• ⊆ S• is
a connected component of S• if S ′• is a summand of S• and S ′• is
connected. We denote the set of all connected components of S• by
π0(S•).
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Simplicial Sets

Definition: Simplicial set of a topological space
Let X be a topological space. We define a simplicial set Sing•(X ) as
follows:

• To each object [n] ∈ ∆, we assign the set
Singn(X ) = HomTop(|∆n|,X ) of singular n-simplices in X .
• To each non-decreasing map α : [m]→ [n], we assign the map

Singn(X )→ Singm(X ) given by precomposition with the
continuous map

|∆m| → |∆n|

(t0, t1, . . . , tm) 7→
( ∑
α(i)=0

ti ,
∑

α(i)=1
ti , . . . ,

∑
α(i)=n

ti
)
.

Sing•(X ) is the so called singular simplicial set of X .
The above construction yields a functor X 7→ Sing•(X ) from the
category of topological spaces to the category of simplicial sets, which
will be denoted by Sing• : Top→ Set∆.
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Simplicial Sets

Let X be a topological space. By definition, n-simplices of the simplicial
set Sing•(X ) are continuous maps |∆n| → X , which yields a bijection

HomTop(|∆n|,X ) ' HomSet∆(∆n, Sing•(X )).

In order to make use of this observation in a more general setting, we
introduce the notion of geometric realization.
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Simplicial Sets

Definition: Geometric Realization
Let S• be a simplicial set and Y a topological space. A map of simplicial
sets u : S• → Sing•(Y ) exhibits Y as a geometric realization of S• if for
every topological space X the composite map

HomTop(Y ,X )→ HomSet∆(Sing•(Y ), Sing•(X )) ◦u→ HomSet∆(S•,Sing•(X ))

is bijective.
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Simplicial Sets

For every n ≥ 0, the identity map |∆n| ' |∆n| determines an n-simplex
of the simplicial set Sing•(|∆n|), which we can identify with a map of
simplicial sets ∆n → Sing•(|∆n|) which exhibits |∆n| as a geoemtric
realization of ∆n.
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Simplicial Sets

Let S• be a simplicial set. If there exists a map u : S• → Sing•(Y ) that
exhibits Y as a geometric realization of S•, then the topological space Y
is determined up to homeomorphism and depends functorially on S•. To
emphasize this dependence, we write |S•| to denote the geometric
realization of S•.
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Simplicial Sets

Proposition
For every simplicial set S• there exists a topological space Y and a map
u : S• → Sing•(Y ) which exhibits Y as a geometric realization of S•.
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Simplicial Sets

We will only provide a sketch of a potential proof of this proposition.
The main insight required for a full proof is that every simplicial set can
be presented as a colimit of simplices. Then we can make use of the
following Lemma

Lemma
Let C be a small category and let F : C → Set∆ be a functor. Let
S• = lim

→ c∈C
F (c)• be a colimit of F . If each of the simplicial sets F (c)•

admits a geometric realization |F (c)•|, then S• also admits a geometric
realization, given by the colimit Y = lim

→ c∈C
|F (c)•|.
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Kan Complexes

Definition: The Horn Λn
i

Given a pair of integers 0 ≤ i ≤ n, we define a simplicial set
Λn

i : ∆op → Set by the formula

(Λn
i )([m]) = {α ∈ Hom∆([m], [n]) : [n] 6⊆ α([m]) ∪ {i}}.

We regard Λn
i as a simplicial subset of the boundary ∂∆n ⊆ ∆n. We will

refer to Λn
i as the ith horn in ∆n. We will say that Λn

i is an inner horn if
0 < i < n, and an outer horn if i = 0 or i = n.
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Kan Complexes

Roughly speaking, one can think of the horn Λn
i as obtained from the

n-simplex ∆n by removing its interior together with the face opposite its
ith vertex.
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Kan Complexes

Definition: Kan Complex
Let S• be a simplicial set. We will say that S• is a Kan complex if it
satisfies the following condition
(?) For n > 0 and 0 ≤ i ≤ n, any map of simplicial sets σ0 : Λn

i → S•
can be extended to a map σ : ∆n → S•. Here Λn

i ⊆ ∆n denotes the
ith horn.
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Kan Complexes

Example
Let X be a topological space. Then the singular simplicial set Sing•(X )
is a Kan complex.
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Kan Complexes

Let σ0 : Λn
i → Sing•(X ) be a map of simplicial sets for n > 0; we wish

to show that σ0 can be extended to an n-simplex of X .

Using the geometric realization functor, we can identify σ0 with a
continuous map of topological spaces f0 : |Λn

i | → X ; we wish to show
that f0 factors as a composition

|Λn
i | → |∆n| f→ X .

We can identify |Λn
i | with the subset

{(t0, . . . , tn) ∈ |∆n| : tj = 0 for some j 6= i} ⊆ |∆n|.

We take f to be the composition f0 ◦ r , where r is any continuous
retraction of |∆n| onto the subset |Λn

i |. A possible candidate is the map
r given by the formula

r(t0, . . . , tn) = (t0 − c, . . . , ti−1 − c, ti + nc, ti+1 − c, . . . , tn − c),

where c = min{t0, . . . , ti−1, ti+1, . . . , tn}.
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We take f to be the composition f0 ◦ r , where r is any continuous
retraction of |∆n| onto the subset |Λn

i |. A possible candidate is the map
r given by the formula

r(t0, . . . , tn) = (t0 − c, . . . , ti−1 − c, ti + nc, ti+1 − c, . . . , tn − c),

where c = min{t0, . . . , ti−1, ti+1, . . . , tn}.
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Kan Complexes

Example
Let G• be a simplicial group (that is, a simplicial object of the category
of groups). Then the underlying simplicial set of G• is a Kan complex.
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Kan Complexes

What makes Kan complexes special and worth consideration? To get a
glimpse of the power of Kan Complexes, we will give a short introduction
to ∞-categories.

There are three major reasons for why Kan complexes play such an
important role in the theory of ∞-categories:

1 Every Kan Complex is an ∞-category
2 For any pair X ,Y of objects in a ∞-category C , we can associate a

Kan Complex HomC (X ,Y ), which is called the space of maps from
X to Y

3 The collection of all Kan complexes can be organized into an
∞-category, which is called the ∞-category of spaces.
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∞-categories

Recall that to any topological space X , we can associate the set π0(X )
of path components of X and given a base point x ∈ X we can associate
the fundamental group π1(X ).

Combining the set of path components and the fundamental groups
{π1(X , x)}x∈X yields the fundamental groupoid π≤1(X ), a category
whose objects are the points of X with morphisms from a point x ∈ X
to a point y ∈ X is given by a homotopy class of continuous paths
p : [0, 1]→ X satisfying p(0) = x and p(1) = y .
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∞-categories

We can recover the set of path components π0(X ) from the set of
isomorphism classes of objects of the category π≤1(X ) and each
fundamental group π1(X , x) can be identified with the automorphism
group of the point x as an object of the category.

Despite the importance of the invariant π≤1(X ) of a topological space
X , this is far from a complete invariant, since it does not contain any
information about higher homotopy groups {πn(X , x)}n≥2.
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∞-categories

This naturally raises the question: Is there a ”category-theoretic”
invariant of a topological space X , in the spirit of the fundamental
groupoid π≤1(X ), which contains information about all the homotopy
groups of X?
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∞-categories

This question is partially answered by what we have discussed up to now.
Every topological space X determines a simplicial set Sing•(X ). The
homotopy groups of X can be reconstructed from the simplicial set
Sing•(X ) by a simple combinatorial procedure and we can use this
procedure even for Kan Complexes.
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∞-categories

We saw that every topological space X determines a simplicial set which
is in fact a Kan complex and Kan complexes form a particular class of
simplicial sets. On the other hand we can consider a different class of
simplicial sets which arise from the theory of categories.

To each category C we associate a simplicial set N•(C), called the nerve
of C . This construction C 7→ N•(C) turns out to be fully faithful, which
allows us to consider any category C as a simplicial set.
In particular, one can show that a simplicial set S• belongs to the
essential image of the functor C 7→ N•(C) if and only if it satisfies some
lifting condition.
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∞-categories

Proposition
Let S• be a simplicial set. Then S• is isomorphic to the nerve of a
category if and only if it satisfies the following condition:

(??) For every pair of integers 0 < i < n and every map of simplicial sets
σ0 : Λn

i → S•, there exists a unique map σ : ∆n → S• such that
σ0 = σ|Λn

i
.
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∞-categories

So we have two different classes of simplicial sets, which are defined
using the following conditions:

(?) For n > 0 and 0 ≤ i ≤ n, any map of simplicial sets σ0 : Λn
i → S•

can be extended to a map σ : ∆n → S•. Here Λn
i ⊆ ∆n denotes the

ith horn.
(??) For every pair of integers 0 < i < n and every map of simplicial sets

σ0 : Λn
i → S•, there exists a unique map σ : ∆n → S• such that

σ0 = σ|Λn
i
.
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∞-categories

It turns out that neither one of these two conditions is a generalization
of the other one. But they admit a shared generalization:

An ∞-category is a simplicial set S• which satisfies the following
condition:
(?′) For 0 < i < n, every map of simplicial sets σ0 : Λn

i → S• can be
extended to a map σ : ∆n → S•.

Sometimes the condition (?′) is referred to as the weak Kan extension
condition.
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∞-categories

Example
Every Kan complex is an ∞-category and in particular, if X is a
topological space, then the singular simplicial set Sing•(X ) is an
∞-category.
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∞-categories

Example
For every category C , the nerve N•(C) is an ∞-category.
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∞-categories

We summarize the various classes of simplicial sets we have encountered
so far with the following diagram:
{Categories} N•

↪−→ {∞-Categories}

∩

{Kan Complexes}⊃

{Simplicial Sets} {Topological Spaces}

Sing•

OO
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∞-categories

Let C = S• be an ∞-category. An object of C is a vertex of the
simplicial set S•, i.e. an element of the set S0. A morphism of C is an
edge of the simplicial set S•.
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∞-categories

Example: N•(C)
Let C be a category and regard the simplicial set N•(C) as an
∞-category. Then:

• The objects of the ∞-category N•(C) are the objects of C .
• The morphisms of the ∞-category N•(C) are the morphisms of C

and the source and target of a morphism of C coincide with the
source and target of the corresponding morphism of N•(C)
• For every object X ∈ C , the identity morphism idX does not depend

on whether we view X as an object of the category C or the
∞-category N•(C).

Timo Rohner (UJ) Kan Complexes November 18, 2020 53 / 83



∞-categories

Example: N•(C)
Let C be a category and regard the simplicial set N•(C) as an
∞-category. Then:
• The objects of the ∞-category N•(C) are the objects of C .

• The morphisms of the ∞-category N•(C) are the morphisms of C
and the source and target of a morphism of C coincide with the
source and target of the corresponding morphism of N•(C)
• For every object X ∈ C , the identity morphism idX does not depend

on whether we view X as an object of the category C or the
∞-category N•(C).

Timo Rohner (UJ) Kan Complexes November 18, 2020 53 / 83



∞-categories

Example: N•(C)
Let C be a category and regard the simplicial set N•(C) as an
∞-category. Then:
• The objects of the ∞-category N•(C) are the objects of C .
• The morphisms of the ∞-category N•(C) are the morphisms of C

and the source and target of a morphism of C coincide with the
source and target of the corresponding morphism of N•(C)

• For every object X ∈ C , the identity morphism idX does not depend
on whether we view X as an object of the category C or the
∞-category N•(C).

Timo Rohner (UJ) Kan Complexes November 18, 2020 53 / 83



∞-categories

Example: N•(C)
Let C be a category and regard the simplicial set N•(C) as an
∞-category. Then:
• The objects of the ∞-category N•(C) are the objects of C .
• The morphisms of the ∞-category N•(C) are the morphisms of C

and the source and target of a morphism of C coincide with the
source and target of the corresponding morphism of N•(C)
• For every object X ∈ C , the identity morphism idX does not depend

on whether we view X as an object of the category C or the
∞-category N•(C).

Timo Rohner (UJ) Kan Complexes November 18, 2020 53 / 83



∞-categories

Example: Sing•(X )
Let X be a topological space, and regard the simplicial set Sing•(X ) as
an ∞-category. Then:

• The objects of the ∞-category Sing•(X ) are the points of X .
• The morphisms of the ∞-category Sing•(X ) are continuous paths

f : [0, 1]→ X . The source of a morphism f is the point f (0) and
the target is the point f (1).
• For every point x ∈ X , the identity morphism idx is the constant

path [0, 1]→ X taking the value x .
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∞-categories

Homotopies of morphisms
Let C be an ∞-category and let f , g : C → D be a pair of morphisms in
C having the same source and target. A homotopy from f to g is a
2-simplex σ of C satisfying d0(σ) = idD, d1(σ) = g , and d2(σ) = f , as
depited in the diagram

D
idD

  
C

f
??

g // D.
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∞-categories

Example
Let C be an ordinary category. Then a pair of morphisms f , g : C → D
in C are homotopic as morphisms of the ∞-category N•(C) if and only if
f = g .
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∞-categories

Example
Let X be a topological space. Suppose we are given points x , y ∈ X and
a pair of continuous paths f , g : [0, 1]→ X satisfying f (0) = x = g(0)
and f (1) = y = g(1). Then f and g are homotopic as morphisms of the
∞-category Sing•(X ) if and only if the paths f and g are homotopic
relative to their endpoints, that is, if and only if there exists a continuous
function H : [0, 1]× [0, 1]→ X satisfying

H(s, 0) = f (s) H(s, 1) = g(s) H(0, t) = x H(1, t) = y .
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∞-categories

Proposition
Let C be an ∞-category containing objects X ,Y ∈ C , and let E denote
the collection of all morphisms from X to Y in C . Then homotopy is an
equivalence relation on E .
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∞-categories

For any morphism f : X → Y in C , the degenerate 2-simplex s1(f ) is a
homotopy from f to itself. It follows that homotopy is a reflexive
relation on E .

We will show that for three morphisms f , g , h : X → Y from X to Y f
homotopic to g and f homotopic to h implies that g is homotopic to h.
First, we observe that in the case f = h we get symmetry, so we can
replace f homotopic to g with g homotopic to f in above claim. Then
we have transitivity and we are done.
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∞-categories

So we just need to prove above claim. Let σ2 and σ3 be 2-simplices of C
which are homotopies from f to h and f to g , respectively, and let σ0 be
the 2-simplex given by the constant map ∆2 → ∆0 Y→ C . Then the
tuple (σ0, •, σ2, σ3) determines a map of simplicial sets τ0 : Λ3

1 → C ,
depicted informally by the diagram

Y idY //

idY

''

Y

idY

��
X

f

??

g

77

h // Y ;
with the dotted arrows representing the boundary of the ”missing” face
of the horn Λ3

1. Our hypothesis that C is an ∞-category guarantees that
τ0 can be extended to a 3-simplex τ of C . We can then regard the face
d1(τ) as a homotopy from g to h.
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∞-categories

Let C be an ∞-category. Suppose we are given objects X ,Y ,Z ∈ C and
morphisms f : X → Y , g : Y → Z and h : X → Z . We will say that h is
a composition of f and g if there exists a 2-simplex σ of C satisfying
d0(σ) = g , d1(σ) = h and d2(σ) = f .
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∞-categories

Proposition
Let C be an ∞-category containing morphisms f : X → Y and
g : Y → Z . Then:

1 There exists a morphism h : X → Z which is a composition of f
and g .

2 Let h : X → Z be a composition of f and g , and let h′ : X → Z be
another morphism in C having the same source and target. Then h′
is a composition of f and g if and only if h′ is homotopic to h.
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∞-categories

Proposition
Let C be an ∞-category. Suppose we are given a pair of homotopic
morphisms f , f ′ : X → Y in C and a pair of homotopic morphisms
g , g ′ : Y → Z in C . Let h be a composition of f and g , and let h′ be a
composition of f ′ and g ′. Then h is homotopic to h′.
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∞-categories

Let h′′ be a composition of f and g ′. Since homotopy is an equivalence
relation, it will suffice to show that both h and h′ are homotopic to h′′.
We will show that h is homotopic to h′′ since the proof that h′ is
homotopic to h′′ is simlar. Let σ3 be a 2-simplex of C which witnesses h
as a composition of f and g , let σ2 be a 2-simplex of C which witnesses
h as a composition of f and g , let σ2 be the 2-simplex of C which
witnesses h′′ as a composition of f and g ′, and let σ0 be a 2-simplex of
C which is a homotopy from g to g ′.
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∞-categories

Then the tuple (σ0, •, σ2, σ3) determines a map of simplicial sets
τ0 : Λ3

1 → C which we depict imformally as a diagram
Y g //

g ′

''

Z

idZ

��
X

f

??

h

77

h′′ // Z
where the dotted arrows indicate the boundary of the ”missing” face of
the horn Λ3

1. Using our assumption that C is an ∞-category, we can
extend τ0 to a 3-simplex τ of C . Then the face d1(τ) is a homotopy
from h to h′′.
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∞-categories

Let C be an ∞-category. For every pair of objects X ,Y ∈ C , we let
HomhC(X ,Y ) denote the set of homotopy classes of morphisms from X
to Y in C .

For every morphism f : X → Y , we let [f ] denote its equivalence class in
HomhC(X ,Y ).
It follows from the 2 previous propositions that for every triple of objects
X ,Y ,Z ∈ C , there is a unique composition law

◦ : HomhC(Y ,Z )×HomhC(X ,Y )→ HomhC(X ,Z )

satisfying the identity [g ] ◦ [f ] = [h] whenever h : X → Z is a
composition of f and g in the ∞-category C .
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∞-categories

Proposition
Let C be an ∞-category. Then

1 The composition law above is associative, that is for every triple of
composable morphisms f : W → X , g : X → Y , and h : Y → Z in
C , we have an equality ([h] ◦ [g ]) ◦ [f ] = [h] ◦ ([g ] ◦ [f ]) in
HomhC(W ,Z ).

2 For every object X ∈ C , the homotopy class [idX ] ∈ HomhC(X ,X )
is a two-sided identity with respect to the composition law above.
That is, for every morphism f : W → X in C and every morphism
g : X → Y in C , we have [idX ] ◦ [f ] = [f ] and [g ] ◦ [idX ] = [g ].
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∞-categories

The Homotopy Category
Let C be an ∞-category. We define a category hC as follows:
• The objects of hC are the objects of C .
• For every pair of objects X ,Y ∈ C , we let HomhC(X ,Y ) denote

the collection of homotopy classes of morphisms from X to Y in the
∞-category C (as discussed just above).
• For every object X ∈ C , the identity morphism from X to itself in

hC is given by the homotopy class [idX ].
• Composition of morphisms is defined as above.

We will refer to hC as the homotopy category of the ∞-category C .
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∞-categories

Example
Let C be an ordinary category. Then the homotopy category of the
∞-category N•(C) can be identified with C . For instance, the homotopy
category h∆n can be identified with [n] = {0 < 1 < . . . < n}.
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∞-categories

Example
Let X be a topological space, and consider the singular simplicial set
Sing•(X ) as an ∞-category. Then the homotopy category hSing•(X )
can be identified with the fundamental groupoid π≤1(X ).

In fact, we can regard the treatment of ∞-categories up to now when
restricted to ∞-categories of the form Sing•(X ) as providing a
construction of the fundamental groupoid of X .
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Some results concerning Kan Complexes

Recall that we defined the category of simplicial sets as the functor
category Fun(∆op,Set). This automatically yields morphisms between
simplicial sets.

Let X ,Y be simplicial sets and suppose we have f , g : X → Y , which we
identify with vertices of the simplicial set Fun(X ,Y ). We will say that f
and g are homotopic if they belong to the same connected component of
the simplicial set Fun(X ,Y ).
In other words, Let X and Y be simplicial sets, and suppose we are given
a pair of morphisms f0, f1 : X → Y . A homotopy from f0 to f1 is a
morphism h : ∆1 × X → Y satisfying f0 = h|{0}×X and f1 = h|{1}×X .
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Some results concerning Kan Complexes

The Homotopy Category of Kan Complexes
We define a category hKan as follows:
• The objects of hKan are Kan complexes.
• If X and Y are Kan complexes, then

HomhKan(X ,Y ) = [X ,Y ] = π0(Fun(X ,Y )) is the set of homotopy
classes of morphisms from X to Y .
• If X ,Y ,Z are Kan complexes, then the composition law

◦ : HomhKan(Y ,Z )×HomhKan(X ,Y )→ HomhKan(X ,Z )

is characterized by the formula [g ] ◦ [f ] = [g ◦ f ].
We will refer to hKan as the Homotopy category of Kan Complexes.
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Some results concerning Kan Complexes

Let f : X → Y be a morphism of simplicial sets. We will say that a
morphism g : Y → X is a homotopy inverse to f if the compositions
g ◦ f and f ◦ g are homotopic to the identity morphisms idX and idY
respectively.
We say that f : X → Y is a homotopy equivalence if it admits a
homotopy inverse g .
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Some results concerning Kan Complexes

Let f : X → Y be a homotopy equivalence of topological spaces. Then
the induced map of singular simplicial sets
Sing•(f ) : Sing•(X )→ Sing•(Y ) is a homotopy equivalence.
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Some results concerning Kan Complexes

Pointed simplicial set
A pointed simplicial set is a pair (X , x) where X is a simplicial set and x
is a vertex of X . If X is a Kan complex, then we refer to the pair (X , x)
as a pointed Kan complex.
A pointed map between two Kan Complexes (X , x), (Y , y) is a
morphism of Kan complexes f : X → Y satisfying f (x) = y . We let
Kan∗ denote the category whose objects are pointed Kan complexes and
whose morphisms are pointed maps.
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Some results concerning Kan Complexes

Pointed homotopic
Let (X , x) and (Y , y) be simplicial sets, and suppose we are given a pair
of pointed maps f , g : X → Y , which we identify with vertices of the
simplicial set Fun(X ,Y )×Fun({x},Y ) {y}.
We say that f and g are pointed homotopic if they belong to the same
connected component of Fun(X ,Y )×Fun({x},Y ) {y}.

Timo Rohner (UJ) Kan Complexes November 18, 2020 76 / 83



Some results concerning Kan Complexes

Homotopy Category of pointed Kan complexes
We define a category hKan∗ as follows:
• The objects of hKan∗ are pointed Kan complexes (X , x).
• If (X , x) and (Y , y) are pointed Kan complexes, then

HomhKan∗((X , x), (Y , y)) = [X ,Y ]∗ is the set of pointed homotopy
classes of morphisms from (X , x) to (Y , y).
• If (X , x), (Y , y), (Z , z) are pointed Kan complexes, then the

composition law

◦ : HomhKan∗((Y , y), (Z , z))×HomhKan∗((X , x), (Y , y))→ HomhKan∗((X , x), (Z , z))

is characterized by the formula [g ] ◦ [f ]g = [g ◦ f ].
We refer to hKan∗ as the homotopy category of pointed Kan complexes.
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Some results concerning Kan Complexes

We are now ready to construct the homotopy groups of Kan complexes
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Some results concerning Kan Complexes

Let X be a topological space and let x ∈ X be a point.

For every positive integer n, we let πn(X , x) denote the set of homotopy
classes of pointed maps (Sn, x0)→ (X , x) where Sn denotes a sphere of
dimension n and x0 ∈ Sn is a chosen base point.
The set πn(X , x) can be endowed with the structure of a group, which
we refer to as the nth homotopy group of X with respect to the base
point x .
The sphere Sn can be realized as the quotient |∆n|/|∂∆n|, obtained from
the topological simplex |∆n| by collapsing its boundary to a single point.
We can therefore identify pointed maps (Sn, x0)→ (X , x) with maps of
simplicial sets f : ∆n → Sing•(X ) which carry the boundary ∂∆n to the
simplicial subset {x} ⊆ Sing•(X ). This gives us a direct construction of
the homotopy group πn(X , x) in terms of the simplicial set Sing•(X ).
This construction can be applied directly to any Kan complex.
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Some results concerning Kan Complexes

Whitehead’s Theorem for Kan complexes
Let f : X → Y be a morphism of Kan complexes. Then f is a homotopy
equivalence if and only if it satisfies the following two conditions:
• The map of sets π0(f ) : π0(X )→ π0(Y ) is a bijection.
• For every vertex x ∈ X having image y = f (x) in Y and every

positive integer n, the map of homotopy groups
πn(f ) : πn(X , x)→ πn(Y , y) is bijective.
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Some results concerning Kan Complexes

The easy direction that says that for every homotopy equivalence
f : X → Y we have an induced isomorphism on homotopy groups
already requires quite a bit of work.

The main annoyance is that f being a homotopy equivalence guarantees
that we have an induced isomorphism in the homotopy category hKan of
Kan complexes. But Homotopy groups of X and Y are computed by
viewing (X , x) and (Y , y) as objects of hKan∗.
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Some results concerning Kan Complexes

Milnor’s Theorem
The geometric realization functor | • | : Set∆ → Top induces an
equivalence from the homotopy category hKan to the full subcategory of
hTop spanned by those topological spaces X which have the homotopy
type of a CW complex.

Timo Rohner (UJ) Kan Complexes November 18, 2020 82 / 83



Some results concerning Kan Complexes

The proof of this major theorem consists of three major steps:

1 Show that geometric realization is well-defined at the level of
homotopy categories

2 Show that the geometric realization functor | • | : hKan→ hTop is
fully faithful.

3 Show that if Y is a topological space, then the counit map
vY : |Sing•(Y )| → Y is a homotopy equivalence if and only if Y
has the homotopy type of a CW complex.
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