Kan Complexes and their relevance in the theory of ∞ -categories

Algebraic and Differential Topology seminar

Timo Rohner

Version: 2020-11-17

Contents

1	Simplicial Sets		
	1.1	Simplex Category	3
	1.2	Simplicial object	3
	1.3	Simplicial set	3
	1.4	Category of simplicial sets	3
	1.5	Standard n -simplex	3
	1.6	Connectedness of simplicial sets	4
	1.7	Simplicial set of a Topological space	4
	1.8	Geometric Realization	5
2	Kan Complexes		
	2.1	Definition	6
	2.2	Examples	6
	2.3	Relevance of Kan Complexes	7
3	∞ -categories		
	3.1	Motivation	8
	3.2	Definition	9
	3.3	Examples	9
	3.4	Homotopies in ∞ -categories	10
	3.5	Composition of morphisms	11
	3.6	The homotopy category of an ∞ -category $\ldots \ldots \ldots \ldots \ldots \ldots$	12
4	Bac	k to Kan Complexes	14
	4.1	The Homotopy Category of Kan Complexes	14
	4.2	Homotopy Equivalences and Weak Homotopy Equivalences	14
	4.3	Homotopy Groups of a Kan Complex	15

1 Simplicial Sets

§1.1 Simplex Category

Definition 1.1.1. We define a category Δ as follows:

- The objects of Δ are linearly ordered sets of the form [n] for $n \ge 0$.
- A morphism from [m] to n in the category Δ is a function $\alpha : [m] \to [n]$ which is nondecreasing: that is, for each $0 \le i \le j \le m$, we have $0 \le \alpha(i) \le \alpha(j) \le n$.

We will refer to Δ as the simplex category.

§1.2 Simplicial object

Definition 1.2.1. Let C be any category. A simplicial object of C is a functor $\Delta^{\text{op}} \to C$. Dually, a cosimplicial object of C is a functor $\Delta \to C$.

§1.3 Simplicial set

Definition 1.3.1. A simplicial set is a functor $\Delta^{op} \to Set$ from the simplex category to the category of sets.

In other words, a simplicial set is a presheaf over the simplex category Δ .

§1.4 Category of simplicial sets

Definition 1.4.1. Since simplicial sets are defined as functors, we have a functor category $\operatorname{Fun}(\Delta^{\operatorname{op}}, \operatorname{Set})$, which we call the category of simplicial sets and denote by $\operatorname{Set}_{\Delta}$.

Remark 1.4.2 — Since any simplicial set S_{\bullet} is a functor from $\Delta^{\mathrm{op}} \to \mathrm{Set}$, we will write S_n for the value of the functor S_{\bullet} on the object $[n] \in \Delta$.

§1.5 Standard *n*-simplex

Definition 1.5.1. For $n \ge 0$, we let Δ^n denote the simplicial set given by

$$([m] \in \Delta) \mapsto \operatorname{Hom}_{\Delta}([m], [n])$$

This is the standard *n*-simplex and we extend to the case n = -1 by setting $\Delta^{-1} = \emptyset$.

Definition 1.5.2 (Simplicial subset of a simplicial set). Let S_{\bullet} be a simplicial set. Suppose that for every integer $n \geq 0$ we have a susbet $T_n \subseteq S_n$ such that the face and degeneracy maps $d_i : S_n \to S_{n-1}$ and $s_i : S_n \to S_{n+1}$ sends T_n into T_{n-1} and T_{n+1} , respectively. Then the collection $\{T_n\}_{n\geq 0}$ inherits the structure of a simplicial set T_{\bullet} and in this case we say that T_{\bullet} is a simplicial subset of S_{\bullet} and we can make use of the notation $T_{\bullet} \subseteq S_{\bullet}$. **Definition 1.5.3** (Boundary of Δ^n). For $n \ge 0$, we define a simplicial set $(\partial \Delta^n) : \Delta^{\text{op}} \to$ Set by the formula

$$(\partial \Delta^n)([m]) = \{ \alpha \in \operatorname{Hom}_{\Delta}([m], [n]) : \alpha \text{ is not surjective} \}.$$

We can regard $\partial \Delta^n$ as a simplicial subset of the standard *n*-simplex Δ^n .

Remark 1.5.4 — Δ^n as defined above is indeed a functor from Δ^{op} to Set, since $\text{Hom}_C(\cdot, a): C \to \text{Set}$ is a contravariant functor for any object $a \in C$.

By the Yoneda lemma, we have the following universal property for the standard *n*-simplex Δ^n : For every simplicial set X_{\bullet} , we have a bijection

$$\operatorname{Hom}_{\operatorname{Set}_{\Lambda}}(\Delta^n, X_{\bullet}) \simeq X_n.$$

This fact allows us to identify *n*-simplices of X_{\bullet} with maps of simplicial sets $\sigma: \Delta^n \to X_{\bullet}$.

Remark 1.5.5 — We denote by $|\Delta^n|$ the topological simplex of dimension *n*, i.e.

 $|\Delta^{n}| := \{(t_0, \dots, t_n) \in [0, 1]^{n+1} : t_0 + t_1 + \dots + t_n = 1\}.$

§1.6 Connectedness of simplicial sets

We can also introduce the notion of connected components for simplicial sets.

Definition 1.6.1. Let S_{\bullet} be a simplicial set and let $S'_{\bullet} \subseteq S_{\bullet}$ be a simplicial subset of S_{\bullet} . S'_{\bullet} is a summand of S_{\bullet} decomposes as a coproduct $S'_{\bullet} \sqcup S''_{\bullet}$, for some other simplicial subset $S''_{\bullet} \subseteq S_{\bullet}$.

Definition 1.6.2. Let S_{\bullet} be a simplicial set. S_{\bullet} is connected it is non-empty and every summand $S'_{\bullet} \subseteq S_{\bullet}$ is either empty or coincides with S_{\bullet} .

Definition 1.6.3. Let S_{\bullet} be a simplicial set. We will say that a simplicial subset $S'_{\bullet} \subseteq S_{\bullet}$ is a connected component of S_{\bullet} if S'_{\bullet} is a summand of S_{\bullet} and S'_{\bullet} is connected. We denote the set of all connected components of S_{\bullet} by $\pi_0(S_{\bullet})$.

§1.7 Simplicial set of a Topological space

Definition 1.7.1. Let X be a topological space. We define a simplicial set $Sing_{\bullet}(X)$ as follows:

- To each object $[n] \in \Delta$, we assign the set $\operatorname{Sing}_n(X) = \operatorname{Hom}_{\operatorname{Top}}(|\Delta^n|, X)$ of singular *n*-simplices in X.
- To each non-decreasing map $\alpha : [m] \to [n]$, we assign the map $\operatorname{Sing}_n(X) \to \operatorname{Sing}_m(X)$ given by precomposition with the continuous map

$$|\Delta^{m}| \to |\Delta^{n}|$$

(t_0, t_1, ..., t_m) $\mapsto \Big(\sum_{\alpha(i)=0} t_i, \sum_{\alpha(i)=1} t_i, \dots, \sum_{\alpha(i)=n} t_i\Big).$

 $\operatorname{Sing}_{\bullet}(X)$ is the so called singular simplicial set of X. The above construction yields a functor $X \mapsto \operatorname{Sing}_{\bullet}(X)$ from the category of topological spaces to the category of simplicial sets, which will be denoted by $\operatorname{Sing}_{\bullet}$: Top $\to \operatorname{Set}_{\Delta}$.

Let X be a topological space. By definition, *n*-simplices of the simplicial set $\operatorname{Sing}_{\bullet}(X)$ are continuous maps $|\Delta^n| \to X$, which yields a bijection

$$\operatorname{Hom}_{\operatorname{Top}}(|\Delta^n|, X) \simeq \operatorname{Hom}_{\operatorname{Set}_{\Lambda}}(\Delta^n, \operatorname{Sing}_{\bullet}(X)).$$

In order to make use of this observation in a more general setting, we introduce the notion of geometric realization.

§1.8 Geometric Realization

Definition 1.8.1. Let S_{\bullet} be a simplicial set and Y a topological space. A map of simplicial sets $u: S_{\bullet} \to \text{Sing}_{\bullet}(Y)$ exhibits Y as a geometric realization of S_{\bullet} if for every topological space X the composite map

 $\operatorname{Hom}_{\operatorname{Top}}(Y,X) \to \operatorname{Hom}_{\operatorname{Set}_\Delta}(\operatorname{Sing}_{\bullet}(Y),\operatorname{Sing}_{\bullet}(X)) \stackrel{\circ u}{\to} \operatorname{Hom}_{\operatorname{Set}_\Delta}(S_{\bullet},\operatorname{Sing}_{\bullet}(X))$

is bijective.

Example 1.8.2

For every $n \ge 0$, the identity map $|\Delta^n| \simeq |\Delta^n|$ determines an *n*-simplex of the simplicial set $\operatorname{Sing}_{\bullet}(|\Delta^n|)$, which we can identify with a map of simplicial sets $\Delta^n \to \operatorname{Sing}_{\bullet}(|\Delta^n|)$ which exhibits $|\Delta^n|$ as a geoemtric realization of Δ^n .

Remark 1.8.3 — Let S_{\bullet} be a simplicial set. If there exists a map $u: S_{\bullet} \to \operatorname{Sing}_{\bullet}(Y)$ that exhibits Y as a geometric realization of S_{\bullet} , then the topological space Y is determined up to homeomorphism and depends functorially on S_{\bullet} . To emphasize this dependence, we write $|S_{\bullet}|$ to denote the geometric realization of S_{\bullet} .

Proposition 1.8.4

For every simplicial set S_{\bullet} there exists a topological space Y and a map $u: S_{\bullet} \to Sing_{\bullet}(Y)$ which exhibits Y as a geometric realization of S_{\bullet} .

Proof. We will only provide a sketch of a potential proof of this proposition. The main insight required for a full proof is that every simplicial set can be presented as a colimit of simplices. Then we can make use of the following Lemma

Lemma 1.8.5

Let C be a small category and let $F: C \to \text{Set}_{\Delta}$ be a functor. Let $S_{\bullet} = \lim_{\substack{\to \\ c \in C}} F(c)_{\bullet}$ be a colimit of F. If each of the simplicial sets $F(c)_{\bullet}$ admits a geometric realization $|F(c)_{\bullet}|$, then S_{\bullet} also admits a geometric realization, given by the colimit $Y = \lim_{\substack{\to \\ c \in C}} |F(c)_{\bullet}|$.

2 Kan Complexes

§2.1 Definition

Definition 2.1.1 (The Horn Λ_i^n). Given a pair of integers $0 \le i \le n$, we define a simplicial set $\Lambda_i^n : \Delta^{\text{op}} \to \text{Set}$ by the formula

 $(\Lambda_i^n)([m]) = \{ \alpha \in \operatorname{Hom}_{\Delta}([m], [n]) : [n] \not\subseteq \alpha([m]) \cup \{i\} \}.$

We regard Λ_i^n as a simplicial subset of the boundary $\partial \Delta^n \subseteq \Delta^n$. We will refer to Λ_i^n as the *i*th horn in Δ^n . We will say that Λ_i^n is an inner horn if 0 < i < n, and an outer horn if i = 0 or i = n.

Definition 2.1.2 (Kan Complex). Let S_{\bullet} be a simplicial set. We will say that S_{\bullet} is a Kan complex if it satisfies the following condition

(*) For n > 0 and $0 \le i \le n$, any map of simplicial sets $\sigma_0 : \Lambda_i^n \to S_{\bullet}$ can be extended to a map $\sigma : \Delta^n \to S_{\bullet}$. Here $\Lambda_i^n \subseteq \Delta^n$ denotes the *i*th horn.

§2.2 Examples

Proposition 2.2.1

Let X be a topological space. Then the singular simplicial set $\operatorname{Sing}_{\bullet}(X)$ is a Kan complex.

Proof. Let $\sigma_0 : \Lambda_i^n \to \operatorname{Sing}_{\bullet}(X)$ be a map of simplicial sets for n > 0; we wish to show that σ_0 can be extended to an *n*-simplex of X. Using the geometric realization functor, we can identify σ_0 with a continuous map of topological spaces $f_0 : |\Lambda_i^n| \to X$; we wish to show that f_0 factors as a composition

$$|\Lambda_i^n| \to |\Delta^n| \stackrel{f}{\to} X.$$

We can identify $|\Lambda_i^n|$ with the subset

 $\{(t_0,\ldots,t_n)\in |\Delta^n|: t_j=0 \text{ for some } j\neq i\}\subseteq |\Delta^n|.$

We take f to be the composition $f_0 \circ r$, where r is any continuous retraction of $|\Delta^n|$ onto the subset $|\Lambda_i^n|$. A possible candidate is the map r given by the formula

$$r(t_0,\ldots,t_n) = (t_0 - c,\ldots,t_{i-1} - c,t_i + nc,t_{i+1} - c,\ldots,t_n - c),$$

where $c = \min\{t_0, \ldots, t_{i-1}, t_{i+1}, \ldots, t_n\}.$

Proposition 2.2.2

Let G_{\bullet} be a simplicial group (that is, a simplicial object of the category of groups). Then the underlying simplicial set of G_{\bullet} is a Kan complex. Proof. Let n be a positive integer and $\vec{\sigma}: \Lambda_i^n \to G_{\bullet}$ be a map of simplicial sets for some $0 \leq i \leq n$, which we will identify with a tuple $(\sigma_0, \sigma_1, \ldots, \sigma_{i-1}, \bullet, \sigma_{i+1}, \ldots, \sigma_n)$ of elements of the group G_{n-1} . We wish to prove that there exists an element $\tau \in G_n$ satisfying $d_j\tau = \sigma_j$ for $j \neq i$. Let e denote the identity element of G_{n-1} . We first treat the special case where $\sigma_{i+1} = \ldots = \sigma_n = e$. If, in addition, we have $\sigma_0 = \sigma_1 = \ldots = \sigma_{i-1} = e$, then we can take τ to be the identity element of G_n . Otherwise, there exists so smallest integer j < i such that $\sigma_j \neq e$. We proceed by descending induction on j. Set $\tau'' = s_j\sigma_j \in G_n$, and consider the map $\vec{\sigma}' : \Lambda_i^n \to G_{\bullet}$ given by the tuple $(\sigma'_0, \sigma'_1, \ldots, \sigma'_{i-1}, \bullet, \sigma'_{i+1}, \ldots, \sigma'_n)$ with $\sigma'_k = \sigma_k (d_k \tau'')^{-1}$. Then we have $\sigma'_0 = \sigma'_1 = \ldots = \sigma'_j = e$ and $\sigma'_{i+1} = \ldots = \sigma'_n = e$. Invoking our inductive hypothesis we conclude that there exists an element $\tau' \in G_n$ satisfying $d_k \tau' = \sigma'_k$ for $k \neq i$. We can then complete the proof by taking τ to be the product $\tau' \tau''$.

If not all of the equalities $\sigma_{i+1} = \ldots = \sigma_n = e$ hold, then there exists some largest integer j > i such that $\sigma_j \neq e$. We now proceed by ascending induction on j. Set $\tau'' = s_{j-1}\sigma_j$ and let $\vec{\sigma}' : \Lambda_i^n \to G_{\bullet}$ be the map given by the tuple $(\sigma'_0, \sigma'_1, \ldots, \sigma'_{i-1}, \bullet, \sigma'_{i+1}, \ldots, \sigma'_n)$ with $\sigma'_k = \sigma_k (d_k \tau'')^{-1}$ as before. We then have $\sigma_j = \sigma_{j+1} = \ldots = \sigma_n = e$, so the inductive hypothesis guarantees the existence of an element $\tau' \in G_n$ satisfying $d_k \tau' = \sigma'_k$ for $k \neq i$. As before, we complete the proof by setting $\tau = \tau' \tau''$.

§2.3 Relevance of Kan Complexes

What makes Kan complexes special and worth consideration? To get a glimpse of the power of Kan Complexes, we will give a short introduction to ∞ -categories.

Recall that Kan Complexes are a special class of simplicial sets, namely simplicial sets X with the property that for n > 0 and $0 \le i \le n$, any morphism of simplicial sets $\sigma_0 : \Lambda_i^n \to X$ can be extended to an n-simplex of X. There are three major reasons for why Kan complexes play such an important role in the theory of ∞ -categories:

- 1. Every Kan Complex is an ∞ -category
- 2. For any pair X, Y of objects in a ∞ -category C, we can associate a Kan Complex $\operatorname{Hom}_C(X, Y)$, which is called the space of maps from X to Y
- The collection of all Kan complexes can be organized into an ∞-category, which is called the ∞-category of spaces.

$\mathbf{3}_{\infty\text{-categories}}$

§3.1 Motivation

Recall that to any topological space X, we can associate the set $\pi_0(X)$ of path components of X and given a base point $x \in X$ we can associate the fundamental group $\pi_1(X)$. Combining the set of path components and the fundamental groups $\{\pi_1(X,x)\}_{x\in X}$ yields the fundamental groupoid $\pi_{\leq 1}(X)$, a category whose objects are the points of X with morphisms from a point $x \in X$ to a point $y \in X$ is given by a homotopy class of continuous paths $p: [0,1] \to X$ satisfying p(0) = x and p(1) = y.

We can recover the set of path components $\pi_0(X)$ from the set of isomorphism classes of objects of the category $\pi_{\leq 1}(X)$ and each fundamental group $\pi_1(X, x)$ can be identified with the automorphism group of the point x as an object of the category.

Despite the importance of the invariant $\pi_{\leq 1}(X)$ of a topological space X, this is far from a complete invariant, since it does not contain any information about higher homotopy groups $\{\pi_n(X, x)\}_{n\geq 2}$.

This naturally raises the question: Is there a "category-theoretic" invariant of a topological space X, in the spirit of the fundamental groupoid $\pi_{\leq 1}(X)$, which contains information about all the homotopy groups of X?

This question is partially answered by what we have discussed up to now. Every topological space X determines a simplicial set $\operatorname{Sing}_{\bullet}(X)$. The homotopy groups of X can be reconstructed from the simplicial set $\operatorname{Sing}_{\bullet}(X)$ by a simple combinatorial procedure. In fact, the same combinatorial procedure can be applied to all Kan Complexes as we shall discover later.

We saw that every topological space X determines a simplicial set which is in fact a Kan complex and Kan complexes form a particular class of simplicial sets. On the other hand we can consider a different class of simplicial sets which arise from the theory of categories.

To each category C we associate a simplicial set $N_{\bullet}(C)$, called the nerve of C. This construction $C \mapsto N_{\bullet}(C)$ turns out to be fully faithful, which allows us to consider any category C as a simplicial set.

In particular, one can show that a simplicial set S_{\bullet} belongs to the essential image of the functor $C \mapsto N_{\bullet}(C)$ if and only if it satisfies some lifting condition.

Proposition 3.1.1

Let S_{\bullet} be a simplicial set. Then S_{\bullet} is isomorphic to the nerve of a category if and only if it satisfies the following condition:

(**) For every pair of integers 0 < i < n and every map of simplicial sets $\sigma_0 : \Lambda_i^n \to S_{\bullet}$, there exists a unique map $\sigma : \Delta^n \to S_{\bullet}$ such that $\sigma_0 = \sigma|_{\Lambda_i^n}$.

So we have two different classes of simplicial sets, which are defined using the following conditions:

(*) For n > 0 and $0 \le i \le n$, any map of simplicial sets $\sigma_0 : \Lambda_i^n \to S_{\bullet}$ can be extended to a map $\sigma : \Delta^n \to S_{\bullet}$. Here $\Lambda_i^n \subseteq \Delta^n$ denotes the *i*th horn.

(**) For every pair of integers 0 < i < n and every map of simplicial sets $\sigma_0 : \Lambda_i^n \to S_{\bullet}$, there exists a unique map $\sigma : \Delta^n \to S_{\bullet}$ such that $\sigma_0 = \sigma|_{\Lambda_i^n}$.

It turns out that neither one of these two conditions is a generalization of the other one. But they admit a shared generalization:

§3.2 Definition

Definition 3.2.1. An ∞ -category is a simplicial set S_{\bullet} which satisfies the following condition:

(*') For 0 < i < n, every map of simplicial sets $\sigma_0 : \Lambda_i^n \to S_{\bullet}$ can be extended to a map $\sigma : \Delta^n \to S_{\bullet}$.

Sometimes the condition (\star') is referred to as the weak Kan extension condition.

§3.3 Examples

Example 3.3.1

Every Kan complex is an ∞ -category and in particular, if X is a topological space, then the singular simplicial set $\operatorname{Sing}_{\bullet}(X)$ is an ∞ -category.

Example 3.3.2 For every category C, the nerve $N_{\bullet}(C)$ is an ∞ -category.

We summarize the various classes of simplicial sets we have encountered so far with the following diagram:

 $\begin{array}{ccc} \{ Categories \} & \stackrel{\mathbb{N}_{\bullet}}{\longrightarrow} \{ \infty \mbox{-}Categories \} & \supset & \{ Kan \mbox{ Complexes} \} \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & &$

Definition 3.3.3. Let $C = S_{\bullet}$ be an ∞ -category. An object of C is a vertex of the simplicial set S_{\bullet} , i.e. an element of the set S_0 . A morphism of C is an edge of the simplicial set S_{\bullet} .

Example 3.3.4

Let C be a category and regard the simplicial set $N_{\bullet}(C)$ as an ∞ -category. Then:

- The objects of the ∞ -category $N_{\bullet}(C)$ are the objects of C.
- The morphisms of the ∞ -category $N_{\bullet}(C)$ are the morphisms of C and the source and target of a morphism of C coincide with the source and target of the corresponding morphism of $N_{\bullet}(C)$
- For every object $X \in C$, the identity morphism id_X does not depend on whether we view X as an object of the category C or the ∞ -category $N_{\bullet}(C)$.

Example 3.3.5

Let X be a topological space, and regard the simplicial set $Sing_{\bullet}(X)$ as an ∞ -category. Then:

- The objects of the ∞ -category $\operatorname{Sing}_{\bullet}(X)$ are the points of X.
- The morphisms of the ∞ -category $\operatorname{Sing}_{\bullet}(X)$ are continuous paths $f : [0, 1] \to X$. The source of a morphism f is the point f(0) and the target is the point f(1).
- For every point $x \in X$, the identity morphism id_x is the constant path $[0,1] \to X$ taking the value x.

§3.4 Homotopies in ∞ -categories

Definition 3.4.1 (Homotopies of morphisms). Let C be an ∞ -category and let $f, g : C \to D$ be a pair of morphisms in C having the same source and target. A homotopy from f to g is a 2-simplex σ of C satisfying $d_0(\sigma) = id_D$, $d_1(\sigma) = g$, and $d_2(\sigma) = f$, as depited in the diagram

Example 3.4.2

Let C be an ordinary category. Then a pair of morphisms $f, g: C \to D$ in C are homotopic as morphisms of the ∞ -category $N_{\bullet}(C)$ if and only if f = g.

Example 3.4.3

Let X be a topological space. Suppose we are given points $x, y \in X$ and a pair of continuous paths $f, g: [0,1] \to X$ satisfying f(0) = x = g(0) and f(1) = y = g(1). Then f and g are homotopic as morphisms of the ∞ -category $\operatorname{Sing}_{\bullet}(X)$ if and only if the paths f and g are homotopic relative to their endpoints, that is, if and only if there exists a continuous function $H: [0,1] \times [0,1] \to X$ satisfying

$$H(s,0) = f(s)$$
 $H(s,1) = g(s)$ $H(0,t) = x$ $H(1,t) = y$.

Proposition 3.4.4

Let C be an ∞ -category containing objects $X, Y \in C$, and let E denote the collection of all morphisms from X to Y in C. Then homotopy is an equivalence relation on E.

Proof. For any morphism $f: X \to Y$ in C, the degenerate 2-simplex $s_1(f)$ is a homotopy from f to itself. It follows that homotopy is a reflexive relation on E.

We will show that for three morphisms $f, g, h : X \to Y$ from X to Y f homotopic to g and f homotopic to h implies that g is homotopic to h.

First, we observe that in the case f = h we get symmetry, so we can replace f homotopic to g with g homotopic to f in above claim. Then we have transitivity and we are done.

So we just need to prove above claim. Let σ_2 and σ_3 be 2-simplices of C which are homotopies from f to h and f to g, respectively, and let σ_0 be the 2-simplex given by the constant map $\Delta^2 \to \Delta^0 \xrightarrow{Y} C$. Then the tuple $(\sigma_0, \bullet, \sigma_2, \sigma_3)$ determines a map of simplicial sets $\tau_0 : \Lambda_1^3 \to C$, depicted informally by the diagram

with the dotted arrows representing the boundary of the "missing" face of the horn Λ_1^3 . Our hypothesis that C is an ∞ -category guarantees that τ_0 can be extended to a 3-simplex τ of C. We can then regard the face $d_1(\tau)$ as a homotopy from g to h.

§3.5 Composition of morphisms

Definition 3.5.1. Let C be an ∞ -category. Suppose we are given objects $X, Y, Z \in C$ and morphisms $f : X \to Y$, $g : Y \to Z$ and $h : X \to Z$. We will say that h is a composition of f and g if there exists a 2-simplex σ of C satisfying $d_0(\sigma) = g$, $d_1(\sigma) = h$ and $d_2(\sigma) = f$.

Proposition 3.5.2

Let C be an ∞ -category containing morphisms $f: X \to Y$ and $g: Y \to Z$. Then:

- 1. There exists a morphism $h: X \to Z$ which is a composition of f and g.
- 2. Let $h: X \to Z$ be a composition of f and g, and let $h': X \to Z$ be another morphism in C having the same source and target. Then h' is a composition of f and g if and only if h' is homotopic to h.

Proposition 3.5.3

Let C be an ∞ -category. Suppose we are given a pair of homotopic morphisms $f, f': X \to Y$ in C and a pair of homotopic morphisms $g, g': Y \to Z$ in C. Let h be a composition of f and g, and let h' be a composition of f' and g'. Then h is homotopic to h'.

Proof. Let h'' be a composition of f and g'. Since homotopy is an equivalence relation, it will suffice to show that both h and h' are homotopic to h''. We will show that his homotopic to h'' since the proof that h' is homotopic to h'' is similar. Let σ_3 be a 2-simplex of C which witnesses h as a composition of f and g, let σ_2 be a 2-simplex of C which witnesses h as a composition of f and g, let σ_2 be the 2-simplex of C which witnesses h'' as a composition of f and g', and let σ_0 be a 2-simplex of C which is a homotopy from g to g'. Then the tuple $(\sigma_0, \bullet, \sigma_2, \sigma_3)$ determines a map of simplicial sets $\tau_0 : \Lambda_1^3 \to C$ which we depict informally as a diagram

where the dotted arrows indicate the boundary of the "missing" face of the horn Λ_1^3 . Using our assumption that C is an ∞ -category, we can extend τ_0 to a 3-simplex τ of C. Then the face $d_1(\tau)$ is a homotopy from h to h''.

§3.6 The homotopy category of an ∞ -category

Let C be an ∞ -category. For every pair of objects $X, Y \in C$, we let $\operatorname{Hom}_{hC}(X, Y)$ denote the set of homotopy classes of morphisms from X to Y in C. For every morphism $f: X \to Y$, we let [f] denote its equivalence class in $\operatorname{Hom}_{hC}(X, Y)$.

It follows from the 2 previous propositions that for every triple of objects $X, Y, Z \in C$, there is a unique composition law

 $\circ : \operatorname{Hom}_{\operatorname{hC}}(Y, Z) \times \operatorname{Hom}_{\operatorname{hC}}(X, Y) \to \operatorname{Hom}_{\operatorname{hC}}(X, Z)$

satisfying the identity $[g] \circ [f] = [h]$ whenever $h : X \to Z$ is a composition of f and g in the ∞ -category C.

Proposition 3.6.1

Let C be an ∞ -category. Then

- 1. The composition law above is associative, that is for every triple of composable morphisms $f: W \to X, g: X \to Y$, and $h: Y \to Z$ in C, we have an equality $([h] \circ [g]) \circ [f] = [h] \circ ([g] \circ [f])$ in $\operatorname{Hom}_{\operatorname{hC}}(W, Z)$.
- 2. For every object $X \in C$, the homotopy class $[\operatorname{id}_X] \in \operatorname{Hom}_{\operatorname{hC}}(X, X)$ is a twosided identity with respect to the composition law above. That is, for every morphism $f: W \to X$ in C and every morphism $g: X \to Y$ in C, we have $[\operatorname{id}_X] \circ [f] = [f]$ and $[g] \circ [\operatorname{id}_X] = [g]$.

Definition 3.6.2 (The Homotopy Category). Let C be an ∞ -category. We define a category hC as follows:

- The objects of hC are the objects of C.
- For every pair of objects $X, Y \in C$, we let $\operatorname{Hom}_{hC}(X, Y)$ denote the collection of homotopy classes of morphisms from X to Y in the ∞ -category C (as discussed just above).
- For every object $X \in C$, the identity morphism from X to itself in hC is given by the homotopy class $[id_X]$.
- Composition of morphisms is defined as above.

We will refer to hC as the homotopy category of the ∞ -category C.

Example 3.6.3

Let C be an ordinary category. Then the homotopy category of the ∞ -category $N_{\bullet}(C)$ can be identified with C. For instance, the homotopy category $h\Delta^n$ can be identified with $[n] = \{0 < 1 < \ldots < n\}$.

Example 3.6.4

Let X be a topological space, and consider the singular simplicial set $\operatorname{Sing}_{\bullet}(X)$ as an ∞ -category. Then the homotopy category $\operatorname{hSing}_{\bullet}(X)$ can be identified with the fundamental groupoid $\pi_{\leq 1}(X)$.

In fact, we can regard the treatment of ∞ -categories up to now when restricted to ∞ -categories of the form $\operatorname{Sing}_{\bullet}(X)$ as providing a construction of the fundamental groupoid of X.

Definition 3.6.5. A morphism $f : X \to Y$ of an ∞ -category C is an isomorphism if the homotopy class [f] is an isomorphism in the homotopy category hC.

Proposition 3.6.6

Let C be a Kan Complex. Then every morphism in C is an isomorphism.

4 Back to Kan Complexes

§4.1 The Homotopy Category of Kan Complexes

Recall that we defined the category of simplicial sets as the functor category $Fun(\Delta^{op}, Set)$. This automatically yields morphisms between simplicial sets.

Let X, Y be simplicial sets and suppose we have $f, g : X \to Y$, which we identify with vertices of the simplicial set $\operatorname{Fun}(X, Y)$. We will say that f and g are homotopic if they belong to the same connected component of the simplicial set $\operatorname{Fun}(X, Y)$.

In other words,

Definition 4.1.1. Let X and Y be simplicial sets, and suppose we are given a pair of morphisms $f_0, f_1 : X \to Y$. A homotopy from f_0 to f_1 is a morphism $h : \Delta^1 \times X \to Y$ satisfying $f_0 = h|_{\{0\}\times X}$ and $f_1 = h|_{\{1\}\times X}$.

Definition 4.1.2 (The Homotopy Category of Kan Complexes). We define a category hKan as follows:

- The objects of hKan are Kan complexes.
- If X and Y are Kan complexes, then $\operatorname{Hom}_{h\operatorname{Kan}}(X,Y) = [X,Y] = \pi_0(\operatorname{Fun}(X,Y))$ is the set of homotopy classes of morphisms from X to Y.
- If X, Y, Z are Kan complexes, then the composition law

 \circ : Hom_{hKan} $(Y, Z) \times$ Hom_{hKan} $(X, Y) \rightarrow$ Hom_{hKan}(X, Z)

is characterized by the formula $[g] \circ [f] = [g \circ f]$.

We will refer to hKan as the Homotopy category of Kan Complexes.

§4.2 Homotopy Equivalences and Weak Homotopy Equivalences

Definition 4.2.1. Let $f: X \to Y$ be a morphism of simplicial sets. We will say that a morphism $g: Y \to X$ is a homotopy inverse to f if the compositions $g \circ f$ and $f \circ g$ are homotopic to the identity morphisms id_X and id_Y respectively.

We say that $f: X \to Y$ is a homotopy equivalence if it admits a homotopy inverse g.

Example 4.2.2

Let $f: X \to Y$ be a homotopy equivalence of topological spaces. Then the induced map of singular simplicial sets $\operatorname{Sing}_{\bullet}(f) : \operatorname{Sing}_{\bullet}(X) \to \operatorname{Sing}_{\bullet}(Y)$ is a homotopy equivalence.

§4.3 Homotopy Groups of a Kan Complex

Definition 4.3.1 (Pointed simplicial set). A pointed simplicial set is a pair (X, x) where X is a simplicial set and x is a vertex of X. If X is a Kan complex, then we refer to the pair (X, x) as a pointed Kan complex.

A pointed map between two Kan Complexes (X, x), (Y, y) is a morphism of Kan complexes $f : X \to Y$ satisfying f(x) = y. We let Kan_{*} denote the category whose objects are pointed Kan complexes and whose morphisms are pointed maps.

Definition 4.3.2 (Pointed homotopic). Let (X, x) and (Y, y) be simplicial sets, and suppose we are given a pair of pointed maps $f, g: X \to Y$, which we identify with vertices of the simplicial set $\operatorname{Fun}(X, Y) \times_{\operatorname{Fun}(\{x\}, Y)} \{y\}$.

We say that f and g are pointed homotopic if they belong to the same connected component of $\operatorname{Fun}(X,Y) \times_{\operatorname{Fun}(\{x\},Y)} \{y\}.$

Definition 4.3.3 (Homotopy Category of pointed Kan complexes). We define a category hKan_{*} as follows:

- The objects of hKan_{*} are pointed Kan complexes (X, x).
- If (X, x) and (Y, y) are pointed Kan complexes, then $\operatorname{Hom}_{h\operatorname{Kan}_*}((X, x), (Y, y)) = [X, Y]_*$ is the set of pointed homotopy classes of morphisms from (X, x) to (Y, y).
- If (X, x), (Y, y), (Z, z) are pointed Kan complexes, then the composition law

 $\circ: \operatorname{Hom}_{h\operatorname{Kan}_{*}}((Y, y), (Z, z)) \times \operatorname{Hom}_{h\operatorname{Kan}_{*}}((X, x), (Y, y)) \to \operatorname{Hom}_{h\operatorname{Kan}_{*}}((X, x), (Z, z))$

is characterized by the formula $[g] \circ [f]g = [g \circ f]$.

We refer to hKan_{*} as the homotopy category of pointed Kan complexes.

Remark 4.3.4 — We are now ready to construct the homotopy groups of Kan complexes

Let X be a topological space and let $x \in X$ be a point. For every positive integer n, we let $\pi_n(X, x)$ denote the set of homotopy classes of pointed maps $(S^n, x_0) \to (X, x)$ where S^n denotes a sphere of dimension n and $x_0 \in S^n$ is a chosen base point. The set $\pi_n(X, x)$ can be endowed with the structure of a group, which we refer to as the nth homotopy group of X with respect to the base point x. Note that the sphere S^n can be realized as the quotient $|\Delta^n|/|\partial\Delta^n|$, obtained from the topological simplex $|\Delta^n|$ by collapsing its boundary to a single point.

We can therefore identify pointed maps $(S^n, x_0) \to (X, x)$ with maps of simplicial sets $f : \Delta^n \to \text{Sing}_{\bullet}(X)$ which carry the boundary $\partial \Delta^n$ to the simplicial subset $\{x\} \subseteq$ $\text{Sing}_{\bullet}(X)$. This gives us a direct construction of the homotopy group $\pi_n(X, x)$ in terms of the simplicial set $\text{Sing}_{\bullet}(X)$.

This construction can be applied directly to any Kan complex.

§4.4 Whitehead's Theorem

Theorem 4.4.1 (Whitehead's Theorem for Kan complexes)

Let $f: X \to Y$ be a morphism of Kan complexes. Then f is a homotopy equivalence if and only if it satisfies the following two conditions:

- The map of sets $\pi_0(f) : \pi_0(X) \to \pi_0(Y)$ is a bijection.
- For every vertex $x \in X$ having image y = f(x) in Y and every positive integer n, the map of homotopy groups $\pi_n(f) : \pi_n(X, x) \to \pi_n(Y, y)$ is bijective.

Theorem 4.4.2

The geometric realization functor $|\bullet|$: Set_{Δ} \rightarrow Top induces an equivalence from the homotopy category hKan to the full subcategory of hTop spanned by those topological spaces X which have the homotopy type of a CW complex.

Proof. The proof of this major theorem consists of three major steps:

- 1. Show that geometric realization is well-defined at the level of homotopy categories
- 2. Show that the geometric realization functor $|\bullet|$: hKan \rightarrow hTop is fully faithful.
- 3. Show that if Y is a topological space, then the counit map $v_Y : |\operatorname{Sing}_{\bullet}(Y)| \to Y$ is a homotopy equivalence if and only if Y has the homotopy type of a CW complex.