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1 Simplicial Sets

§1.1 Simplex Category

Definition 1.1.1. We define a category ∆ as follows:

• The objects of ∆ are linearly ordered sets of the form [n] for n ≥ 0.

• A morphism from [m] to n in the category ∆ is a function α : [m]→ [n] which is
nondecreasing: that is, for each 0 ≤ i ≤ j ≤ m, we have 0 ≤ α(i) ≤ α(j) ≤ n.

We will refer to ∆ as the simplex category.

§1.2 Simplicial object

Definition 1.2.1. Let C be any category. A simplicial object of C is a functor ∆op → C.
Dually, a cosimplicial object of C is a functor ∆→ C.

§1.3 Simplicial set

Definition 1.3.1. A simplicial set is a functor ∆op → Set from the simplex category to
the category of sets.

In other words, a simplicial set is a presheaf over the simplex category ∆.

§1.4 Category of simplicial sets

Definition 1.4.1. Since simplicial sets are defined as functors, we have a functor category
Fun(∆op,Set), which we call the category of simplicial sets and denote by Set∆.

Remark 1.4.2 — Since any simplicial set S• is a functor from ∆op → Set, we will
write Sn for the value of the functor S• on the object [n] ∈ ∆.

§1.5 Standard n-simplex

Definition 1.5.1. For n ≥ 0, we let ∆n denote the simplicial set given by

([m] ∈ ∆) 7→ Hom∆([m], [n]).

This is the standard n-simplex and we extend to the case n = −1 by setting ∆−1 = ∅.

Definition 1.5.2 (Simplicial subset of a simplicial set). Let S• be a simplicial set.
Suppose that for every integer n ≥ 0 we have a susbet Tn ⊆ Sn such that the face and
degeneracy maps di : Sn → Sn−1 and si : Sn → Sn+1 sends Tn into Tn−1 and Tn+1,
respectively. Then the collection {Tn}n≥0 inherits the structure of a simplicial set T•
and in this case we say that T• is a simplicial subset of S• and we can make use of the
notation T• ⊆ S•.
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4 Kan Complexes and their relevance in the theory of ∞-categories, by Timo Rohner (2020-11-17)

Definition 1.5.3 (Boundary of ∆n). For n ≥ 0, we define a simpicial set (∂∆n) : ∆op →
Set by the formula

(∂∆n)([m]) = {α ∈ Hom∆([m], [n]) : α is not surjective}.

We can regard ∂∆n as a simplicial subset of the standard n-simplex ∆n.

Remark 1.5.4 — ∆n as defined above is indeed a functor from ∆op to Set, since
HomC(·, a) : C → Set is a contravariant functor for any object a ∈ C.

By the Yoneda lemma, we have the following universal property for the standard
n-simplex ∆n: For every simplicial set X•, we have a bijection

HomSet∆
(∆n, X•) ' Xn.

This fact allows us to identify n-simplices of X• with maps of simplicial sets
σ : ∆n → X•.

Remark 1.5.5 — We denote by |∆n| the topological simplex of dimension n, i.e.

|∆n| := {(t0, . . . , tn) ∈ [0, 1]n+1 : t0 + t1 + . . .+ tn = 1}.

§1.6 Connectedness of simplicial sets

We can also introduce the notion of connected components for simplicial sets.

Definition 1.6.1. Let S• be a simplicial set and let S′• ⊆ S• be a simplicial subset of
S•. S

′
• is a summand of S• decomposes as a coproduct S′• t S′′• , for some other simplicial

subset S′′• ⊆ S•.

Definition 1.6.2. Let S• be a simplicial set. S• is connected it is non-empty and every
summand S′• ⊆ S• is either empty or coincides with S•.

Definition 1.6.3. Let S• be a simplicial set. We will say that a simplicial subset S′• ⊆ S•
is a connected component of S• if S′• is a summand of S• and S′• is connected. We denote
the set of all connected components of S• by π0(S•).

§1.7 Simplicial set of a Topological space

Definition 1.7.1. Let X be a topological space. We define a simplicial set Sing•(X) as
follows:

• To each object [n] ∈ ∆, we assign the set Singn(X) = HomTop(|∆n|, X) of singular
n-simplices in X.

• To each non-decreasing map α : [m] → [n], we assign the map Singn(X) →
Singm(X) given by precomposition with the continuous map

|∆m| → |∆n|

(t0, t1, . . . , tm) 7→
( ∑
α(i)=0

ti,
∑
α(i)=1

ti, . . . ,
∑
α(i)=n

ti

)
.



1 Simplicial Sets 5

Sing•(X) is the so called singular simplicial set of X. The above construction yields
a functor X 7→ Sing•(X) from the category of topological spaces to the category of
simplicial sets, which will be denoted by Sing• : Top→ Set∆.

Let X be a topological space. By definition, n-simplices of the simplicial set Sing•(X)
are continuous maps |∆n| → X, which yields a bijection

HomTop(|∆n|, X) ' HomSet∆
(∆n,Sing•(X)).

In order to make use of this observation in a more general setting, we introduce the
notion of geometric realization.

§1.8 Geometric Realization

Definition 1.8.1. Let S• be a simplicial set and Y a topological space. A map of
simplicial sets u : S• → Sing•(Y ) exhibits Y as a geometric realization of S• if for every
topological space X the composite map

HomTop(Y,X)→ HomSet∆
(Sing•(Y ), Sing•(X))

◦u→ HomSet∆
(S•, Sing•(X))

is bijective.

Example 1.8.2

For every n ≥ 0, the identity map |∆n| ' |∆n| determines an n-simplex of the
simplicial set Sing•(|∆n|), which we can identify with a map of simplicial sets
∆n → Sing•(|∆n|) which exhibits |∆n| as a geoemtric realizatino of ∆n.

Remark 1.8.3 — Let S• be a simplicial set. If there exists a map u : S• → Sing•(Y )
that exhibits Y as a geometric realization of S•, then the topological space Y is
determined up to homeomorphism and depends functorially on S•. To emphasize
this dependence, we write |S•| to denote the geometric realization of S•.

Proposition 1.8.4

For every simplicial set S• there exists a topological space Y and a map u : S• →
Sing•(Y ) which exhibits Y as a geometric realization of S•.

Proof. We will only provide a sketch of a potential proof of this proposition. The main
insight required for a full proof is that every simplicial set can be presented as a colimit
of simplices. Then we can make use of the following Lemma

Lemma 1.8.5

Let C be a small category and let F : C → Set∆ be a functor. Let S• = lim
→ c∈C

F (c)•

be a colimit of F . If each of the simplicial sets F (c)• admits a geometric realization
|F (c)•|, then S• also admits a geometric realization, given by the colimit Y =
lim
→ c∈C

|F (c)•|.

�



2 Kan Complexes

§2.1 Definition

Definition 2.1.1 (The Horn Λn
i ). Given a pair of integers 0 ≤ i ≤ n, we define a

simplicial set Λni : ∆op → Set by the formula

(Λni )([m]) = {α ∈ Hom∆([m], [n]) : [n] 6⊆ α([m]) ∪ {i}}.

We regard Λni as a simplicial subset of the boundary ∂∆n ⊆ ∆n. We will refer to Λni as
the ith horn in ∆n. We will say that Λni is an inner horn if 0 < i < n, and an outer horn
if i = 0 or i = n.

Definition 2.1.2 (Kan Complex). Let S• be a simplicial set. We will say that S• is a
Kan complex if it satisfies the following condition

(?) For n > 0 and 0 ≤ i ≤ n, any map of simplicial sets σ0 : Λni → S• can be extended
to a map σ : ∆n → S•. Here Λni ⊆ ∆n denotes the ith horn.

§2.2 Examples

Proposition 2.2.1

Let X be a topological space. Then the singular simplicial set Sing•(X) is a Kan
complex.

Proof. Let σ0 : Λn
i → Sing•(X) be a map of simplicial sets for n > 0; we wish to show

that σ0 can be extended to an n-simplex of X. Using the geometric realization functor,
we can identify σ0 with a continuous map of topological spaces f0 : |Λni | → X; we wish
to show that f0 factors as a composition

|Λni | → |∆n| f→ X.

We can identify |Λni | with the subset

{(t0, . . . , tn) ∈ |∆n| : tj = 0 for some j 6= i} ⊆ |∆n|.

We take f to be the composition f0 ◦ r, where r is any continuous retraction of |∆n|
onto the subset |Λni |. A possible candidate is the map r given by the formula

r(t0, . . . , tn) = (t0 − c, . . . , ti−1 − c, ti + nc, ti+1 − c, . . . , tn − c),

where c = min{t0, . . . , ti−1, ti+1, . . . , tn}. �

Proposition 2.2.2

Let G• be a simplicial group (that is, a simplicial object of the category of groups).
Then the underlying simplicial set of G• is a Kan complex.
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2 Kan Complexes 7

Proof. Let n be a positive integer and ~σ : Λni → G• be a map of simplicial sets for some
0 ≤ i ≤ n, which we will identify with a tuple (σ0, σ1, . . . , σi−1, •, σi+1, . . . , σn) of elements
of the group Gn−1. We wish to prove that there exists an element τ ∈ Gn satisfying
djτ = σj for j 6= i. Let e denote the identity element of Gn−1. We first treat the special
case where σi+1 = . . . = σn = e. If, in addition, we have σ0 = σ1 = . . . = σi−1 = e, then
we can take τ to be the identity element of Gn. Otherwise, there exists soe smallest integer
j < i such that σj 6= e. We proceed by descending induction on j. Set τ ′′ = sjσj ∈ Gn,
and consider the map ~σ′ : Λn

i → G• given by the tuple (σ′0, σ
′
1, . . . , σ

′
i−1, •, σ′i+1, . . . , σ

′
n)

with σ′k = σk(dkτ
′′)−1. Then we have σ′0 = σ′1 = . . . = σ′j = e and σ′i+1 = . . . = σ′n = e.

Invoking our inductive hypothesis we conclude that there exists an element τ ′ ∈ Gn
satisfying dkτ

′ = σ′k for k 6= i. We can then complete the proof by taking τ to be the
product τ ′τ ′′.

If not all of the equalities σi+1 = . . . = σn = e hold, then there exists some largest integer
j > i such that σj 6= e. We now proceed by ascending induction on j. Set τ ′′ = sj−1σj
and let ~σ′ : Λni → G• be the map given by the tuple (σ′0, σ

′
1, . . . , σ

′
i−1, •, σ′i+1, . . . , σ

′
n) with

σ′k = σk(dkτ
′′)−1 as before. We then have σj = σj+1 = . . . = σn = e, so the inductive

hypothesis guarantees the existence of an element τ ′ ∈ Gn satisfying dkτ
′ = σ′k for k 6= i.

As before, we complete the proof by setting τ = τ ′τ ′′. �

§2.3 Relevance of Kan Complexes

What makes Kan complexes special and worth consideration? To get a glimpse of the
power of Kan Complexes, we will give a short introduction to ∞-categories.

Recall that Kan Complexes are a special class of simplicial sets, namely simplicial
sets X with the property that for n > 0 and 0 ≤ i ≤ n, any morphism of simplicial sets
σ0 : Λni → X can be extended to an n-simplex of X. There are three major reasons for
why Kan complexes play such an important role in the theory of ∞-categories:

1. Every Kan Complex is an ∞-category

2. For any pair X,Y of objects in a ∞-category C, we can associate a Kan Complex
HomC(X,Y ), which is called the space of maps from X to Y

3. The collection of all Kan complexes can be organized into an ∞-category, which is
called the ∞-category of spaces.



3 ∞-categories

§3.1 Motivation

Recall that to any topological space X, we can associate the set π0(X) of path components
of X and given a base point x ∈ X we can associate the fundamental group π1(X).
Combining the set of path components and the fundamental groups {π1(X,x)}x∈X yields
the fundamental groupoid π≤1(X), a category whose objects are the points of X with
morphisms from a point x ∈ X to a point y ∈ X is given by a homotopy class of
continuous paths p : [0, 1]→ X satisfying p(0) = x and p(1) = y.

We can recover the set of path components π0(X) from the set of isomorphism classes
of objects of the category π≤1(X) and each fundamental group π1(X,x) can be identified
with the automorphism group of the point x as an object of the category.

Despite the importance of the invariant π≤1(X) of a topological space X, this is
far from a complete invariant, since it does not contain any information about higher
homotopy groups {πn(X,x)}n≥2.

This naturally raises the question: Is there a ”category-theoretic” invariant of a
topological space X, in the spirit of the fundamental groupoid π≤1(X), which contains
information about all the homotopy groups of X?

This question is partially answered by what we have discussed up to now. Every
topological space X determines a simplicial set Sing•(X). The homotopy groups of X can
be reconstructed from the simplicial set Sing•(X) by a simple combinatorial procedure.
In fact, the same combinatorial procedure can be applied to all Kan Complexes as we
shall discover later.

We saw that every topological space X determines a simplicial set which is in fact a
Kan complex and Kan complexes form a particular class of simplicial sets. On the other
hand we can consider a different class of simplicial sets which arise from the theory of
categories.

To each category C we associate a simplicial set N•(C), called the nerve of C. This
construction C 7→ N•(C) turns out to be fully faithful, which allows us to consider any
category C as a simplicial set.

In particular, one can show that a simplicial set S• belongs to the essential image of
the functor C 7→ N•(C) if and only if it satisfies some lifting condition.

Proposition 3.1.1

Let S• be a simplicial set. Then S• is isomorphic to the nerve of a category if and
only if it satisfies the following condition:

(??) For every pair of integers 0 < i < n and every map of simplicial sets σ0 : Λni →
S•, there exists a unique map σ : ∆n → S• such that σ0 = σ|Λn

i
.

So we have two different classes of simplicial sets, which are defined using the following
conditions:

(?) For n > 0 and 0 ≤ i ≤ n, any map of simplicial sets σ0 : Λni → S• can be extended
to a map σ : ∆n → S•. Here Λni ⊆ ∆n denotes the ith horn.

8



3 ∞-categories 9

(??) For every pair of integers 0 < i < n and every map of simplicial sets σ0 : Λni → S•,
there exists a unique map σ : ∆n → S• such that σ0 = σ|Λn

i
.

It turns out that neither one of these two conditions is a generalization of the other
one. But they admit a shared generalization:

§3.2 Definition

Definition 3.2.1. An ∞-category is a simplicial set S• which satisfies the following
condition:

(?′) For 0 < i < n, every map of simplicial sets σ0 : Λni → S• can be extended to a map
σ : ∆n → S•.

Sometimes the condition (?′) is referred to as the weak Kan extension condition.

§3.3 Examples

Example 3.3.1

Every Kan complex is an ∞-category and in particular, if X is a topological space,
then the singular simplicial set Sing•(X) is an ∞-category.

Example 3.3.2

For every category C, the nerve N•(C) is an ∞-category.

We summarize the various classes of simplicial sets we have encountered so far with
the following diagram:

{Categories} N•
↪−→ {∞-Categories}

∩

{Kan Complexes}⊃

{Simplicial Sets} {Topological Spaces}

Sing•

OO

Definition 3.3.3. Let C = S• be an ∞-category. An object of C is a vertex of the
simplicial set S•, i.e. an element of the set S0. A morphism of C is an edge of the
simplicial set S•.

Example 3.3.4

Let C be a category and regard the simplicial set N•(C) as an ∞-category. Then:

• The objects of the ∞-category N•(C) are the objects of C.

• The morphisms of the ∞-category N•(C) are the morphisms of C and the
source and target of a morphism of C coincide with the source and target of
the corresponding morphism of N•(C)

• For every object X ∈ C, the identity morphism idX does not depend on
whether we view X as an object of the category C or the ∞-category N•(C).
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Example 3.3.5

Let X be a topological space, and regard the simplicial set Sing•(X) as an∞-category.
Then:

• The objects of the ∞-category Sing•(X) are the points of X.

• The morphisms of the∞-category Sing•(X) are continuous paths f : [0, 1]→ X.
The source of a morphism f is the point f(0) and the target is the point f(1).

• For every point x ∈ X, the identity morphism idx is the constant path
[0, 1]→ X taking the value x.

§3.4 Homotopies in ∞-categories

Definition 3.4.1 (Homotopies of morphisms). Let C be an ∞-category and let f, g :
C → D be a pair of morphisms in C having the same source and target. A homotopy
from f to g is a 2-simplex σ of C satisfying d0(σ) = idD, d1(σ) = g, and d2(σ) = f , as
depited in the diagram

D
idD

  

C

f
>>

g
// D.

Example 3.4.2

Let C be an ordinary category. Then a pair of morphisms f, g : C → D in C are
homotopic as morphisms of the ∞-category N•(C) if and only if f = g.

Example 3.4.3

Let X be a topological space. Suppose we are given points x, y ∈ X and a pair of
continuous paths f, g : [0, 1] → X satisfying f(0) = x = g(0) and f(1) = y = g(1).
Then f and g are homotopic as morphisms of the ∞-category Sing•(X) if and only
if the paths f and g are homotopic relative to their endpoints, that is, if and only if
there exists a continuous function H : [0, 1]× [0, 1]→ X satisfying

H(s, 0) = f(s) H(s, 1) = g(s) H(0, t) = x H(1, t) = y.

Proposition 3.4.4

Let C be an∞-category containing objects X,Y ∈ C, and let E denote the collection
of all morphisms from X to Y in C. Then homotopy is an equivalence relation on E.

Proof. For any morphism f : X → Y in C, the degenerate 2-simplex s1(f) is a homotopy
from f to itself. It follows that homotopy is a reflexive relation on E.

We will show that for three morphisms f, g, h : X → Y from X to Y f homotopic to g
and f homotopic to h implies that g is homotopic to h.
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First, we observe that in the case f = h we get symmetry, so we can replace f
homotopic to g with g homotopic to f in above claim. Then we have transitivity and we
are done.

So we just need to prove above claim. Let σ2 and σ3 be 2-simplices of C which are
homotopies from f to h and f to g, respectively, and let σ0 be the 2-simplex given by

the constant map ∆2 → ∆0 Y→ C. Then the tuple (σ0, •, σ2, σ3) determines a map of
simplicial sets τ0 : Λ3

1 → C, depicted informally by the diagram

Y
idY //

idY

''

Y

idY

��

X

f

??

g

77

h // Y ;

with the dotted arrows representing the boundary of the ”missing” face of the horn
Λ3

1. Our hypothesis that C is an ∞-category guarantees that τ0 can be extended to a
3-simplex τ of C. We can then regard the face d1(τ) as a homotopy from g to h. �

§3.5 Composition of morphisms

Definition 3.5.1. Let C be an ∞-category. Suppose we are given objects X,Y, Z ∈ C
and morphisms f : X → Y , g : Y → Z and h : X → Z. We will say that h is a
composition of f and g if there exists a 2-simplex σ of C satisfying d0(σ) = g, d1(σ) = h
and d2(σ) = f .

Proposition 3.5.2

Let C be an ∞-category containing morphisms f : X → Y and g : Y → Z. Then:

1. There exists a morphism h : X → Z which is a composition of f and g.

2. Let h : X → Z be a composition of f and g, and let h′ : X → Z be another
morphism in C having the same source and target. Then h′ is a composition
of f and g if and only if h′ is homotopic to h.

Proposition 3.5.3

Let C be an ∞-category. Suppose we are given a pair of homotopic morphisms
f, f ′ : X → Y in C and a pair of homotopic morphisms g, g′ : Y → Z in C. Let h
be a composition of f and g, and let h′ be a composition of f ′ and g′. Then h is
homotopic to h′.

Proof. Let h′′ be a composition of f and g′. Since homotopy is an equivalence relation,
it will suffice to show that both h and h′ are homotopic to h′′. We will show that h
is homotopic to h′′ since the proof that h′ is homotopic to h′′ is simlar. Let σ3 be a
2-simplex of C which witnesses h as a composition of f and g, let σ2 be a 2-simplex of
C which witnesses h as a composition of f and g, let σ2 be the 2-simplex of C which
witnesses h′′ as a composition of f and g′, and let σ0 be a 2-simplex of C which is a
homotopy from g to g′. Then the tuple (σ0, •, σ2, σ3) determines a map of simplicial sets
τ0 : Λ3

1 → C which we depict imformally as a diagram
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Y
g

//

g′

''

Z

idZ

��

X

f

??

h

77

h′′ // Z
where the dotted arrows indicate the boundary of the ”missing” face of the horn Λ3

1.
Using our assumption that C is an ∞-category, we can extend τ0 to a 3-simplex τ of C.
Then the face d1(τ) is a homotopy from h to h′′. �

§3.6 The homotopy category of an ∞-category

Let C be an ∞-category. For every pair of objects X,Y ∈ C, we let HomhC(X,Y )
denote the set of homotopy classes of morphisms from X to Y in C. For every morphism
f : X → Y , we let [f ] denote its equivalence class in HomhC(X,Y ).

It follows from the 2 previous propositions that for every triple of objects X,Y, Z ∈ C,
there is a unique composition law

◦ : HomhC(Y, Z)×HomhC(X,Y )→ HomhC(X,Z)

satisfying the identity [g] ◦ [f ] = [h] whenever h : X → Z is a composition of f and g in
the ∞-category C.

Proposition 3.6.1

Let C be an ∞-category. Then

1. The composition law above is associative, that is for every triple of composable
morphisms f : W → X, g : X → Y , and h : Y → Z in C, we have an equality
([h] ◦ [g]) ◦ [f ] = [h] ◦ ([g] ◦ [f ]) in HomhC(W,Z).

2. For every object X ∈ C, the homotopy class [idX ] ∈ HomhC(X,X) is a two-
sided identity with respect to the composition law above. That is, for every
morphism f : W → X in C and every morphism g : X → Y in C, we have
[idX ] ◦ [f ] = [f ] and [g] ◦ [idX ] = [g].

Definition 3.6.2 (The Homotopy Category). Let C be an ∞-category. We define a
category hC as follows:

• The objects of hC are the objects of C.

• For every pair of objects X,Y ∈ C, we let HomhC(X,Y ) denote the collection of
homotopy classes of morphisms from X to Y in the ∞-category C (as discussed
just above).

• For every object X ∈ C, the identity morphism from X to itself in hC is given by
the homotopy class [idX ].

• Composition of morphisms is defined as above.

We will refer to hC as the homotopy category of the ∞-category C.
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Example 3.6.3

Let C be an ordinary category. Then the homotopy category of the ∞-category
N•(C) can be identified with C. For instance, the homotopy category h∆n can be
identified with [n] = {0 < 1 < . . . < n}.

Example 3.6.4

Let X be a topological space, and consider the singular simplicial set Sing•(X) as
an ∞-category. Then the homotopy category hSing•(X) can be identified with the
fundamental groupoid π≤1(X).

In fact, we can regard the treatment of ∞-categories up to now when restricted to
∞-categories of the form Sing•(X) as providing a construction of the fundamental
groupoid of X.

Definition 3.6.5. A morphism f : X → Y of an ∞-category C is an isomorphism if the
homotopy class [f ] is an isomorphism in the homotopy category hC.

Proposition 3.6.6

Let C be a Kan Complex. Then every morphism in C is an isomorphism.



4 Back to Kan Complexes

§4.1 The Homotopy Category of Kan Complexes

Recall that we defined the category of simplicial sets as the functor category Fun(∆op, Set).
This automatically yields morphisms between simplicial sets.

Let X,Y be simplicial sets and suppose we have f, g : X → Y , which we identify with
vertices of the simplicial set Fun(X,Y ). We will say that f and g are homotopic if they
belong to the same connected component of the simplicial set Fun(X,Y ).

In other words,

Definition 4.1.1. Let X and Y be simplicial sets, and suppose we are given a pair of
morphisms f0, f1 : X → Y . A homotopy from f0 to f1 is a morphism h : ∆1 ×X → Y
satisfying f0 = h|{0}×X and f1 = h|{1}×X .

Definition 4.1.2 (The Homotopy Category of Kan Complexes). We define a category
hKan as follows:

• The objects of hKan are Kan complexes.

• If X and Y are Kan complexes, then HomhKan(X,Y ) = [X,Y ] = π0(Fun(X,Y )) is
the set of homotopy classes of morphisms from X to Y .

• If X,Y, Z are Kan complexes, then the composition law

◦ : HomhKan(Y, Z)×HomhKan(X,Y )→ HomhKan(X,Z)

is characterized by the formula [g] ◦ [f ] = [g ◦ f ].

We will refer to hKan as the Homotopy category of Kan Complexes.

§4.2 Homotopy Equivalences and Weak Homotopy
Equivalences

Definition 4.2.1. Let f : X → Y be a morphism of simplicial sets. We will say that a
morphism g : Y → X is a homotopy inverse to f if the compositions g ◦ f and f ◦ g are
homotopic to the identity morphisms idX and idY respectively.

We say that f : X → Y is a homotopy equivalence if it admits a homotopy inverse g.

Example 4.2.2

Let f : X → Y be a homotopy equivalence of topological spaces. Then the induced
map of singular simplicial sets Sing•(f) : Sing•(X) → Sing•(Y ) is a homotopy
equivalence.

14
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§4.3 Homotopy Groups of a Kan Complex

Definition 4.3.1 (Pointed simplicial set). A pointed simplicial set is a pair (X,x) where
X is a simplicial set and x is a vertex of X. If X is a Kan complex, then we refer to the
pair (X,x) as a pointed Kan complex.

A pointed map between two Kan Complexes (X,x), (Y, y) is a morphism of Kan
complexes f : X → Y satisfying f(x) = y. We let Kan∗ denote the category whose
objects are pointed Kan complexes and whose morphisms are pointed maps.

Definition 4.3.2 (Pointed homotopic). Let (X,x) and (Y, y) be simplicial sets, and
suppose we are given a pair of pointed maps f, g : X → Y , which we identify with vertices
of the simplicial set Fun(X,Y )×Fun({x},Y ) {y}.

We say that f and g are pointed homotopic if they belong to the same connected
component of Fun(X,Y )×Fun({x},Y ) {y}.

Definition 4.3.3 (Homotopy Category of pointed Kan complexes). We define a category
hKan∗ as follows:

• The objects of hKan∗ are pointed Kan complexes (X,x).

• If (X,x) and (Y, y) are pointed Kan complexes, then HomhKan∗((X,x), (Y, y)) =
[X,Y ]∗ is the set of pointed homotopy classes of morphisms from (X,x) to (Y, y).

• If (X,x), (Y, y), (Z, z) are pointed Kan complexes, then the composition law

◦ : HomhKan∗((Y, y), (Z, z))×HomhKan∗((X,x), (Y, y))→ HomhKan∗((X,x), (Z, z))

is characterized by the formula [g] ◦ [f ]g = [g ◦ f ].

We refer to hKan∗ as the homotopy category of pointed Kan complexes.

Remark 4.3.4 — We are now ready to construct the homotopy groups of Kan
complexes

Let X be a topological space and let x ∈ X be a point. For every positive integer n,
we let πn(X,x) denote the set of homotopy classes of pointed maps (Sn, x0) → (X,x)
where Sn denotes a sphere of dimension n and x0 ∈ Sn is a chosen base point. The set
πn(X,x) can be endowed with the structure of a group, which we refer to as the nth
homotopy group of X with respect to the base point x. Note that the sphere Sn can
be realized as the quotient |∆n|/|∂∆n|, obtained from the topological simplex |∆n| by
collapsing its boundary to a single point.

We can therefore identify pointed maps (Sn, x0) → (X,x) with maps of simplicial
sets f : ∆n → Sing•(X) which carry the boundary ∂∆n to the simplicial subset {x} ⊆
Sing•(X). This gives us a direct construction of the homotopy group πn(X,x) in terms
of the simplicial set Sing•(X).

This construction can be applied directly to any Kan complex.

§4.4 Whitehead’s Theorem

Theorem 4.4.1 (Whitehead’s Theorem for Kan complexes)

Let f : X → Y be a morphism of Kan complexes. Then f is a homotopy equivalence
if and only if it satisfies the following two conditions:
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• The map of sets π0(f) : π0(X)→ π0(Y ) is a bijection.

• For every vertex x ∈ X having image y = f(x) in Y and every positive integer
n, the map of homotopy groups πn(f) : πn(X,x)→ πn(Y, y) is bijective.

Theorem 4.4.2

The geometric realization functor | • | : Set∆ → Top induces an equivalence from
the homotopy category hKan to the full subcategory of hTop spanned by those
topological spaces X which have the homotopy type of a CW complex.

Proof. The proof of this major theorem consists of three major steps:

1. Show that geometric realization is well-defined at the level of homotopy categories

2. Show that the geometric realization functor | • | : hKan→ hTop is fully faithful.

3. Show that if Y is a topological space, then the counit map vY : |Sing•(Y )| → Y is
a homotopy equivalence if and only if Y has the homotopy type of a CW complex.

�
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