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We introduce the notion of the model category and the homotopy cate-
gory associated to a model category, followed by relevant examples of model
categories. We introduce the notion of Quillen equivalence, discuss its im-
portance and draw a contrast between Quillen equivalence and categorical
equivalence. In particular, we highlight how a Quillen equivalence behaves
under association of (∞, 1)-categories to model categories. We introduce two
model categories that have equivalent homotopy categories but fail to be
Quillen equivalent, based on a paper by Dugger & Shipley. We show that
these two model categories have equivalent homotopy categories, filling in
some missing details in the paper by Dugger & Shipley, and give an overview
of how to show that the two model categories are not Quillen equivalent.
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§1 Introduction

We assume that the reader has a rudimentary working knowledge of category theory and
is familiar with the basic definitions and concepts in category theory. The first section
attempts to introduce as much as is reasonable of the machinery from category theory
related to liftings that shows up in later sections of this work.

Following a short exposition of the basic notions from category theory, model categories
are introduced along with the notion of associating a homotopy category to a model
category. We provide multiple examples, some of them serving as ”toy” examples while
others are more important, such as the model structure for the category of topological
spaces and a model structure for modules. The latter will be the main model structure
that we will work with in subsequent sections of this work. We also highlight how the
notion of a model structure for a given category can be weakened, in particular we
define homotopical categories and categories with weak equivalences and discuss how
these weaker assumptions manifest themselves for the homotopy categories associated to
homotopical categories and categories with weak equivalences.

Subsequently, we define Quillen functors, Quillen adjunctions and Quillen equivalences.
In our definitions we provide multiple equivalent conditions and we show that these
conditions are indeed equivalent. We construct an example of a map between topological
spaces that is a weak equivalence for one model structure on the category of topological
spaces that is not a weak equivalence for another model structure on the category of
topological spaces. We discuss briefly how Quillen equivalences can be turned into an
equivalence of (∞, 1)-categories, by touching on how to associate an (∞, 1)-category to a
model category. This process involves the hammock localization, a cofibrantly generated
model structure for the category of simplicial categories, fibrant replacement and taking
the homotopy coherent nerve of a simplicial subcategory.

In the last section of this paper, we concern ourselves with the study of two partic-
ular model categories that have equivalent homotopy categories but fail to be Quillen
equivalent. The first proof of non Quillen equivalence of these two model categories
involved K-theory and was computationally involved. In their paper [7], Dugger & Shipley
presented a different way of proving the non Quillen equivalence of these two model
categories. Our aim is to provide a full and rigorous proof that the homotopy categories
of the two chosen model categories are categorically equivalent and subsequently provide
as detailed of an exposition as is reasonable within the confines of a master thesis of the
argument for the non Quillen equivalence used by Dugger & Shipley.
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§2 Basic category theory

As mentioned in the introduction, we will try to present as much of the required category
theory for liftings and their properties as is feasible and sensible. Of particular interest is
the small object argument, which we introduce at the end of this section.

If the reader wishes to consult a general reference on all matters related to category
theory, we can wholeheartedly recommend [14]. We would be remiss if we did not advise
caution in how one approaches Categories and Sheaves. Due to the detailed nature of
this book, we caution the reader that it can be overwhelming when taking their first
steps in category theory.

Throughout the whole thesis, we chose keep all definitions concerning general category
theoretical concepts in line with nLab [16], which has become somewhat of a reference
for all matters related to category theory.

Definition 2.1. A category C is a small category if its objects form a set and all hom
sets hom(�, �) for objects �, � ∈ C are sets.

Definition 2.2. A category C is a locally small category if all hom sets hom(�, �) for
objects �, � ∈ C are sets.

Remark. We will distinguish generic hom sets that may potentially be proper classes
instead of sets from hom sets that are sets by denoting the former by hom(�, �) and the
latter Hom(�, �).

Definition 2.3. Let C be a small category and D a category. The functor category
Func(C,D) is a category whose objects are given by functors � : � → � and morphisms
are given by natural transformations between such functors.

Remark. Some authors refer to the functor category Func(C,D) as the category of
diagrams in D with space of C and denote it by [C,D] or DC.

Definition 2.4. For any category C we define its arrow category Arr(C) as the category
whose objects are morphisms 0 : - → . of C and whose morphisms are given by
commutative squares, i.e. a morphism 5 : 0 → 1 in Arr(C) is given by the following
commutative square, where 0 : - → . , 1 : -̃ → .̃ , 50 : - → -̃ and 51 : . → .̃ are
morphisms of C,

- -̃

. .̃

10

50

51

and the composition of two morphisms 5 : 0 → 1, 6 : 1 → 2 is given by putting
commutative squares side by side to get a new commutative square 6 5 : 0 → 2 as follows.

- -̃ -̄ - -̄

. .̃ .̄ . .̄

10

50

51

60

61

2

60 50

0

61 51

2
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Remark. We can also define the arrow category of a category C as the functor category
Func(D, C), where D = {0→ 1} is the interval category, that is to say a category with
two objects and a single non-identity morphism between them.

Definition 2.5. A functor � : C → D is said to be full if for any two objects -,. of C
the map homC (-,. ) → homD (� (-), � (. )) given by � is an epimorphism.

Remark. It is important to note that a full functor between two categories � : C → D
does not have to be an epimorphism in the category of categories, since we do not require
� : obj(C) → obj(D) to be surjective. We will now show that it would have to be so.

We consider the category of small categories and two small categories C and D.
Suppose � : C → D is an epimorphism in the category of small categories that is not
surjective on objects. Let D̃ → D be the full subcategory of D whose objects are given
by � (obj(C)) and all morphisms of D with source and target object that is in � (obj(C)).
Since the category of small categories has all small limits and colimits we can consider
the pushout (the definition of the pushout can be found in 2.29)

D̃ D

D D tD̃ D

We have two functors �, � : D → D tD̃ D.The functor � factors through D̃, which

means that there exists a functor  : C → D̃ such that � = 8 , where 8 : D̃ → D is the
inclusion of the full subcategory D̃ into D.

Clearly �� = �8 and �� = �8 . By the universal property of the pushout, we have
�� = ��, but no matter how the functors � and � map D to D tD̃ D, we cannot have

� = �, since there exists at least one object - of D such that - ∉ 8(D̃), which implies
that � (-) ≠ � (-). Therefore, �� = �� does not imply that � = � and therefore �
cannot be an epimorphism.

Definition 2.6. A functor � : C → D is said to be faithful if for any two objects -,.
of C the map homC (-,. ) → homD (� (-), � (. )) given by � is a monomorphism.

Definition 2.7. Let D be a subcategory of C. We say that D is a full subcategory of
C if for any two objects - and . in D we have homC (-,. ) = homD (-,. ).

Equivalently, D is a full subcategory if the inclusion functor 8 : D → C is full.

Definition 2.8. A retract of an object . of a category C is an object - for which there
exist morphisms 8 : - → . and A : . → - such that A8 = 1- .

Definition 2.9. A retract of a morphism 5 : � → � of a category C is a morphism
6 : - → . such that 5 is a retract of 6 as objects in the category Arr(C).

The following proposition is a very basic but extremely important and heavily used
result. While its proof is comparatively trivial, we decided to show the result in full
detail for the sake of completeness.
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Proposition 2.10. A morphism 5 : �→ � of a category C is a retract of a morphism
6 : - → . if and only if there exists a commutative diagram of the following form

� - �

� . �

8 A

65

9 ?

5

1�

1�

Proof. Suppose 5 : � → � is a retract of 6 : - → . as objects of Arr(C). This means
that there exist morphisms 8 : 5 → 6 and A : 6 → 5 in the form of the following two
commutative squares

� - - �

� . . �

5

80

81

6

A0

6

A1

5

such that A8 = 1 5 . This means that A080 = 1� and A181 = 1� and thus we get the
commutative diagram in the statement of the proposition as desired.

Conversely, suppose we are given the commutative diagram from the statement of the
proposition. We want to show that 5 is a retract of 6 when considering 5 and 6 as objects
in Arr(C). By splitting the diagram into two commutative squares, we end up with two
morphisms 8 : 5 → 6 and A : 6 → 5 of Arr(C), each represented as a commutative square
in the following commutative diagram.

� - - �

� . . �

5

80

81

6

A0

6

A1

5

1�

1�

1-

1.

It is obvious that we can extract a commutative square A8 : 5 → 5 from above diagram:

� �

� �

A080

5

A181

5

It is obvious from the previous diagram that A080 = 1� and A181 = 1� and therefore
A8 = 1 5 , which shows that starting from the commutative diagram in the statement of
the proposition we can construct appropriate morphisms 8 : 5 → 6 and A : 6 → 5 such
that A8 = 1 5 , which means that 5 is indeed a retract of 6 when considered as objects of
Arr(C). �
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Definition 2.11. Let � : A → C and � : B → C be functors. The comma category of
� over �, denoted by (�/�) is a category whose objects are triples (�, �, 5 ) with � ∈ A,
� ∈ B, 5 ∈ homC (� (�), � (�)) and morphisms between triples (�, �, 5 ), (�′, �′, 5 ′) are
given by pairs (U, V) where U ∈ homA (�, �′) and V ∈ homB (�, �′) and the following
diagram commutes.

� (�) � (�′)

� (�) � (�′)

� (U)

5

� (V)

5 ′

Definition 2.12. Let C be a category and 0 an object of C. The slice category of C over
0, denoted by (C/0), is the comma category (1C/�), where 1C is the identity functor
and � : 1→ C with � (1) = 0.

Definition 2.13. Let C be a category and 0 an object of C. The coslice category of
C under 0, denoted by (0/C), is the comma category (�/1C), where 1C is the identity
functor and � : 1→ C with � (1) = 0.

Definition 2.14. Let C be a category and D a small category. We define the diagonal
functor Δ : C → CD which takes all objects of - ∈ C to Δ- : D → C, which is the
constant functor that sends all objects of D to - and all morphisms of D to 1- .

Δ sends each morphism -
5
→ . of C to the natural transformation [( 5 ) : Δ- → Δ.

given by [( 5 ) (/) = 5 for all / ∈ D.

Definition 2.15. Let � : C → D be a functor. A cone over � is an object - along with
a natural transformation [ : Δ- → �.

Definition 2.16. Let � : C → D be a functor. A cocone under � is an object - along
with a natural transformation [ : � → Δ- .

Definition 2.17. A category C is called a filtered category if

1. C is non-empty, that is to say it contains at least one object,

2. for any two object -,. of C, there exists an object / and morphisms - → / and
. → / ,

3. for any two parallel morphisms 5 , 6 : - → . between two objects - and . of C,
there exists a third object / along with a morphism ℎ : . → / such that ℎ 5 = ℎ6.

Definition 2.18. Let C be a category and 5 : � → � and 6 : - → . be morphisms.
We say that 5 has the left lifting property with respect to 6 and 6 has the right lifting
property with respect to 5 if for every commutative diagram

� -

� .

65
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there exists a lift ℎ : �→ -, such that the following diagram is commutative.

� -

� .

65
ℎ

Lemma 2.19. Let C be a category and 5 = ?8 a factorization in C. If 5 has the left
lifting property with respect to ?, then 5 is a retract of 8 and dually if 5 has the right
lifting property with respect to 8, then 5 is a retract of ?.

Proof. Suppose 5 has the left lifting property with respect to ?. This means that we
have a lift A : �→ �, as can be seen in the following diagram.

� �

� �

5

8

1�

?A

By commutativity of this diagram we can produce the following commutative diagram,
which exhibits 5 as a retract of 8.

� � �

� � �

5

1�

A

8

1�

?

5

1�

1�

where ?A = 1� follows from ?A 5 = 5 as evident from the diagram.
The second part of the lemma can be shown using a similar reasoning. �

Definition 2.20. Let � : C → D be a functor between a small category C and a
category D. A colimit for � is an object - ∈ D along with a natural transformation
[ : � → Δ- such that for all objects . ∈ D and natural transformation [̃ : � → Δ.

there exists a unique morphism i : - → . in D for which Δ(i)[ = [̃.
If C is a filtered category, then we speak of a filtered colimit.

Remark. Any two colimits for a functor � are canonically isomorphic, which is why we
refer any colimit of a functor as the colimit as long as we know that it exists.

Usually the colimit of a functor � is denoted by lim
→
�.

Definition 2.21. The limit of a functor � : C → D is the colimit of the opposite functor
�op : Cop → Dop.

More explicitly, this means that a limit for a functor � : C → D is given by an object
- ∈ D and a natural transformation [ : Δ- → � such that for all . ∈ D and natural
transformations [̃ : Δ. → � there exists a unique morphism i : . → - in D such that
[Δ(i) = [̃.
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Since a major component of this thesis is the notion of Quillen equivalence, we deem
it sensible to recall the definition of adjoint functors at this point.

Definition 2.22. Let � : C → D and � : D → C be functors. An adjunction from �

to � is defined as a collection of isomorphisms

[-,. : homD (� (-), . ) → homC (-, � (. )),

for any - ∈ C, . ∈ D, that are natural in - and . .
If an adjunction from � to � exists, we say that � and � are adjoint functors. � is

the left adjoint of � and � is the right adjoint of �.

Definition 2.23. Let (!, ') : C
!−→←−
'

D be an adjunction. We call the natural transfor-

mation [ : idC → ' ◦ ! the unit of the adjunction (!, ') and the natural transformation
n : ! ◦ ' → idD the counit of the adjunction.

Definition 2.24. A category C is said to have all small limits (colimits) if the limit
(colimit) for any functor � from a small category D to C exists.

Such a category C is called a complete category if all small limits exist, a cocomplete
category if all small colimits exist and a bicomplete category if it is both complete and
cocomplete.

If a category C has all finite limits (colimits), that is to say that the limit (colimit)
for any functor � from a finite category D to C exists, then we say that C is a finitely
complete (finitely cocomplete) category.

Remark. Given a category C with all colimits and a class of morphisms ( of C, we
denote by

� rlp(() morphisms with the right lifting property with respect to morphisms in (,

� llp(() morphisms with the left lifting property with respect to morphisms in (.

Proposition 2.25. Let C be any category and ( a class of maps of C. Then llp(() and
rlp(() are closed under retracts and composition.

Proof. Suppose 5 : �→ � and 6 : �→ � are maps with the left lifting property with
respect to maps in a class of maps (. Let k := 6 5 : �→ �.

We need to show that for any given diagram of the form

� -

� .
V

U

k i∈(

there exists a lift ℎ : � → -.
We split this diagram into a bigger commutative diagram.

� -

�

� .

V◦6

U

5

i∈(

6

V
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Since 5 ∈ ;; ?(() we know that there exists a lift ℎ : �→ - and we get a commutative
diagram

� -

� .

i∈(ℎ5

U

V◦6

Since 6 ∈ ;; ?((), there exists a lift 9 : � → - such that the following diagram is
commutative.

� -

� .

i∈(

ℎ

6

V

9

We need to verify that 9 is such that the following diagram is commutative.

� -

� .

i∈(

ℎ

6

V

9

The only thing we need to verify is that U = 9 ◦ 6 ◦ 5 . By commutativity of the diagrams
above we know that U = ℎ ◦ 5 and ℎ = 9 ◦ 6. Thus we have U = ℎ ◦ 5 = 9 ◦ 6 ◦ 5 and we
are done.

The same argument can be used to show that the class A; ?(() is closed under compo-
sition.

Suppose that we have the following commutative square, where 5 is a retract of 6 as
before.

� �

� �

5 i

Since 5 is a retract of 6, we have the following commutative diagram.

� - � �

� . � �

5 i6 5

id�

id�

It is clear from this diagram that any commutative square involving 5 : � → � and
i : � → � with i ∈ ( can be turned into a commutative square involving 6 : - → .

and i : � → �. Thus any commutative diagram involving 5 and i is such that we can
embed a commutative square involving 6 in it and use the left lifting property of 6 to
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produce a lift for the commutative square involving 5 , which exhibits the left lifting
property of 5 with respect to i.

Closure under retracts of A; ?(() is formally dual to the above argument. �

Definition 2.26. Let C be a category and let D be a category whose objects are given
by a set I and whose only morphisms are identity morphisms.

Any functor � : D → C can be characterized by a collection {�8}I , where each �8 ∈ C.

The coproduct of {�8}I is given by the colimit of � and denoted by
⊔
8

�8.

Definition 2.27. Let C be a category and let D be a category whose objects are given
by a set I and whose only morphisms are identity morphisms.

Any functor � : D → C can be characterized by a collection {�8}I , where each �8 ∈ C.

The product of {�8}I is given by the limit of � and denoted by
∏
8

�8.

Definition 2.28. Let C be a category. An object ∅ of C is called an initial object if
there exists exactly one morphism from ∅ to each object of C.

An object ∗ of C is called a terminal object if there exists exactly one morphism from
each object of C to ∗.

Definition 2.29. Let C be a category and suppose we have the following diagram

�

� �

65

where �, �, � are objects of C.

The colimit of this diagram is called the pushout.

Remark. If in above definition the colimit exists, then the pushout of the diagram is
the following commutative square.

�

� �

-

65

8281

Additionally, the pushout of a diagram has the universal property that for any commuta-
tive square of the form

�

� �

.

65

9291
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there exists a unique morphism ℎ : - → . such that ℎ81 = 91 and ℎ82 = 82, which is
summarized by the following commutative diagram.

�

� �

-

.

65

9291

81 82

ℎ

Definition 2.30. Let C be a category and suppose we have the following diagram

� �

�

65

where �, �, � are objects of C.

The limit of this diagram is called the pullback.

Remark. If the limit of a diagram as in above definition exists, then the pullback is a
commutative square of the following form.

-

� �

�

65

?2?1

Not unlike for pushouts, pullbacks have the universal property that for any commutative
square

.

� �

�

65

A2A1

there exists a unique morphism ℎ : . → - such that ?1ℎ = A1 and ?2ℎ = A2, which we
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summarize with the following diagram.

.

-

� �

�

65

A2A1

ℎ

?1 ?2

Definition 2.31. Let C be a category with all small colimits and U an ordinal. An
U-sequence is a colimit-preserving functor - : U→ C, which we can present as

-0 → -1 → . . .→ -V → . . .

where V < U and -W := - (W) for any W < U.
Since - preserves colimits, the induced map lim

→V<W
-V → -W is an isomorphism for any

W < U.
The map -0 → lim

→V<U
-V is called the composition of the U-sequence, which is unique

up to isomorphism of -.
If � is a collection of morphisms of C such that for any V + 1 < U, the map -V → -V+1

is in �, then the composition of the U-sequence - is a transfinite composition of maps or
to be more precise a transfinite composition of maps of �.

Definition 2.32. Let W be a cardinal and U an ordinal. We say that U is W-filtered if U
is a limit ordinal and if for any � ⊆ U with |�| ≤ W, then sup� < U.

Definition 2.33. Let C be a category with all small colimits, � a collection of morphisms
of C, . an object of C and ^ a cardinal. The object . is said to be ^-small relative to �
if for all ^-filtered ordinals U and all U-sequences - : U→ C

-0 → -1 → . . .→ -V → . . .

the maps -V → -V+1 is in the collection � for any V + 1 < U and the induced map of
morphisms

lim
→V<U

homC (., -V) → homC (., lim
→V<U

-V)

is an isomorphism.
If . is ^-small relative to � for some ^, then . is said to be small relative to � and we

say that . is small if . is small relative to the collection of morphisms of C.

Remark. A more intuitive way of thinking of transfinite composition is summarized in
the following diagram.

- (0) - (1) - (2) . . .

- (U)

- (0→1) - (1→2)
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Definition 2.34. Let C be a category that has all colimits and � a subset of morphisms
of C. A �-cell complex in C is an object that is connected to the initial object by a
transfinite composition of pushouts of morphisms in �. By this we mean that 5 : - → .

is a �-cell complex in C if there exists an ordinal U and an U-indexed transfinite sequence
- : U→ C such that 5 is the transfinite composition of the transfinite sequence - and
such that for any V with V+1 < U, the map - (V→ V+1) can be obtained as the pushout
of a morphism � 3 6V : �V → �V, that is to say that there exists a pushout square

�V - (V)

�V - (V + 1)

6V - (V→V+1)

A relative �-cell complex in C relative to some object � is defined as above with the
exception that we are interested in the object being connected to � instead of the initial
object.

Definition 2.35. Let C be a category with all colimits and let ( be a class of morphisms
of C. We denote by

� cell(() the relative cell complexes obtained by transfinite composition of pushouts
of coproducts of elements in (,

� cof (() the class of retracts of elements of cell((),

� inj(() the class of morphisms with the right lifting property with respect to all
morphisms in ( and we call elements of inj(() (-injective morphisms.

Definition 2.36. A category C is called a pointed category if it has a zero object, that
is the category has an initial object and a terminal object which are isomorphic.

Theorem 2.37 (Small object argument). Let C be a category and � a set of morphisms
of C such that C has all colimits and each morphism in � has a small domain relative to
transfinite composition of pushouts of morphisms in �, that is to say that the domains of
the maps of � are small relative to the collection of maps cell(�).

Then any morphism 5 of C can be expressed as a factorization 5 = ℎ6, where
ℎ ∈ rlp(�) and 6 ∈ cell(�), where cell(�) is the set of transfinite compositions of pushouts
of morphisms in � and rlp(�) is the set of morphisms that have the right lifting property
with respect to �.

Remark. The small object argument is a fundamental result in category theory. The
name comes from Quillen who as far as we are aware was the first to use a simplified
version of the more general small object argument we gave in Theorem 2.37 above, in
[17] Chapter II.3, Lemma 3.

For a more recent paper that discusses the small object argument, we recommend
[11] by Richard Garner, which may be of interest to the reader. In particular, this
paper discusses the lack of universal property of the small object argument, issues
concerning convergence and not having an obvious direct relation with other transfinite
constructions in categorical algebra and provides a different treatment that addresses
the aforementioned deficiencies.

For a proof of the small object argument in the formulation given above, we refer to
[13], Theorem 2.1.14.
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§3 Model category

§3.1 The definition of a model category

Definition 3.1. A model category is a categoryM along with three distinguished classes
of maps W, F , C, called weak equivalences, fibrations and cofibrations, respectively,
such that the following axioms are satisfied.

1. M has all small limits and colimits,

2. for any two morphisms 5 , 6 such that the composition 6 5 is defined, it holds that
if two of 5 , 6, 6 5 are weak equivalences, then so is the third, i.e. if two of 5 , 6, 6 5
are in W, then so is the third,

3. given a retract 5 of a fibration, cofibration or weak equivalence 6, then f is also a
fibration, cofibration or a weak equivalence,

4. cofibrations have the left lifting property with respect to morphisms inW∩F and
fibrations have the right lifting property with respect to morphisms in W ∩ C,

5. there exist two functorial factorizations (0, 1) and (2, 3) on M such that for any
morphism 5 : - → . in M we have 0 5 ∈ C, 1 5 ∈ W ∩ F , 2 5 ∈ W ∩ C, and
35 ∈ F and such that given any commutative square

- -̃

. .̃

i

5

k

6

there exist morphisms (0, 1) (i, k), (2, 3) (i, k) such that the following two diagrams
commute

- -̃ - -̃

/ /̃ / /̃

. .̃ . .̃

i

k

0 5

1 5

(0,1) (i,k)

06

16

i

2 5

35

k

(2,3) (i,k)

26

36

and such that (0, 1) (i◦ĩ, k◦k̃) = (0, 1) (i, k)◦(0, 1) (ĩ, k̃) and (2, 3) (i◦ĩ, k◦k̃) =
(2, 3) (i, k) ◦ (2, 3) (ĩ, k̃).

Remark. Some authors introduce the notion of model categories by first introducing the
notion of model structures. One motivation for doing so comes from the fact that it is
possible to impose two different model structures on the same category. For completeness
we also present this approach to defining the notion of model categories. It is trivial to
see that these two ways of defining model categories are compatible.
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Definition 3.2. A model structure on a bicomplete category M consists of a triple of
distinguished classes of morphisms (W, F , C), called weak equivalences, fibrations, and
cofibrations respectively, such that conditions 2, 3, 4 and 5 in Definition 3.1 are satisfied.

Definition 3.3. A model category M is a bicomplete category along with a model
structure (W, F , C).

Remark. As we shall see later, there are other ways of defining model categories. In
particular, we will come across one more equivalent way of defining model categories
when we introduce the notion of categories with weak equivalences.

Remark. Model categories were first introduced by Quillen [17], who referred to them
as closed model categories. It has become common to refer to them as simply model
categories.

Definition 3.4. Let M be a model category with weak equivalencesW, fibrations F
and cofibrations C. We say that a morphism is

� an acyclic fibration or trivial fibration if it is in W ∩ F ,

� an acyclic cofibration or trivial cofibration if it is in W ∩ C.

Remark. Since model categories are by definition bicomplete, any model category has
an initial and a terminal object, given by the colimit and limit of the empty diagram.

We can also turn any model category M into a pointed model category M∗, which
is nothing more than a minimally modified version of M under the terminal object ∗.
Objects of M∗ are maps ∗ → -, where - ∈ M and morphisms between ∗ → - and
∗ → . are morphisms - → . that sends the unique map ∗ → - to the unique map
∗ → . .

Not every object - of M may come with a morphism ∗ → - in the model category
M. This does not pose a big concern, seeing as model categories naturally come with a
coproduct. Each object - of M has a coproduct with ∗, which allows us to consider the
slightly modified model category M̃ whose objects are given by -

∐ ∗, where - is an
object of M and ∗ is the terminal object of M. We have a functor that sends -

∐ ∗ of
M̃ to - of M.

Definition 3.5. Let M be a category with a terminal object ∗. Its corresponding
category of pointed objects is the category whose objects are given by morphisms of the
form ∗ → - and morphisms are given by commuting triangles of the form

∗

- .

Equivalently, we can define the category of pointed objects as the category M under
the terminal object ∗ or the coslice category (∗/M).

Remark. Let M be a category with a terminal object ∗ and finite colimits. Then there
is a forgetful functor * : (∗/M) →M which has a left adjoint given by the object-wise
coproduct with the base point ∗

(−)
∐
∗ :M → (∗/M).
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Proposition 3.6. Let M be a category with a terminal object ∗ and finite colimits.
Then (∗/M) has a zero object.

Proposition 3.7. Let M be a model category. Then there exists a model structure for
the category M∗ in which a map 5 is a cofibrant, fibration or weak equivalence if and
only if * 5 is a cofibration, fibration or weak equivalence respectively.

Proof. Weak equivalences in M∗ clearly satisfy the 2-out-of-3 property. Closure under
retracts for cofibrations, fibrations and weak equivalences is also trivially true. That
means we only have to show that cofibrations have the left lifting property with respect
to trivial fibrations, fibrations have the right lifting property with respect to trivial
cofibrations and that there exist two functorial factorizations that satisfy the conditions
given in the definition of a model category.

Let 8 be a cofibration and ? a trivial fibration in M∗. This means that by definition
*8 is a cofibration and *? is a trivial fibration in M. Therefore *8 has the left lifting
property with respect to *?. Therefore there exists a lift. That lift has to preserve the
basepoint, since all morphisms of M∗ preserve the basepoint ∗ and thus any lift of a
diagram with maps originating from M∗ must preserve the basepoint as well. While
there may be diagrams where the horizontal maps come from M may not produce a lift
that preserves the basepoint ∗, as long as all the 4 maps in the diagram come from M∗,
the lift must preserve the basepoint.

The same argument allows us to show that fibrations have the right lifting property
with respect to trivial cofibrations in M∗.

Finally, we need to show the existence of two functorial factorizations that satisfy the
required conditions.

We consider the factorization in M of a map 5 : - → / that is in M∗, i.e. 5 =

V( 5 ) ◦ U( 5 ) in M, where U( 5 ) is a cofibration and V( 5 ) a trivial fibration. If we show
that U( 5 ) and V( 5 ) preserve the basepoint, then we may conclude that (U, V) is a valid
functorial factorization for the model structure of the category M∗.

Let U( 5 ) : - → . and V( 5 ) : . → /. Since (U, V) is a functorial factorization, we
know that we have the following commutative diagram

∗ .̃ ∗

- . /
U( 5 ) V( 5 )

5

U(id∗) V(id∗)

id

6

where 6 is a morphism .̃ → . such that this diagram is commutative.

Therefore we have the following commutative triangles.

∗ ∗

- . . /
U( 5 )

6U(id∗)

V( 5 )

6U(id∗)
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This means that U( 5 ) and V( 5 ) are morphisms in M∗ and therefore there exists a
functorial factorization (U, V) that sends 5 : - → . ofM∗ to a cofibration U( 5 ) followed
by a trivial fibration V( 5 ) of M∗.

The same reasoning applies to the functorial factorization (X, W) that sends 5 : - → .

of M∗ to a trivial cofibration X( 5 ) followed by a fibration W( 5 ). �

Definition 3.8. Let M be a model category. We say that an object - of M is

� fibrant if the unique morphism from - to the terminal object ∗ is a fibration,

� cofibrant if the unique morphism from the initial object ∅ to - is a cofibration.

Proposition 3.9. Let M be a model category and - ∈ M an object of M. Then there
exist a fibrant object '- along with a weak equivalence - → '- and a cofibrant object
&- along with a weak equivalence &- → -.

Proof. Let - ∈ M. Since model categories have an initial object ∅ and a terminal object
∗ there exist two maps ∅ → - and - → ∗. Using the functorial factorization systems

(0, 1) and (2, 3) we can factorize those two maps into ∅
51→ .

61→ - and -
52→ /

62→ ∗,
where 51 is a cofibration, 61 a trivial fibration, 52 a trivial cofibration and 62 a fibration.

Since 61 is a trivial fibration, it is a weak equivalence and therefore . is weakly
equivalent to - and . is a cofibrant object since 51 : ∅ → . is a cofibration.

Likewise, since 52 is a trivial cofibration, it is a weak equivalence and therefore / is
weakly equivalent to - and / is a fibrant object since 62 : / → ∗ is a fibration.

Thus, . is the so called cofibrant replacement &- of - and / is the fibrant replacement
'- of -. �

Remark. It follows directly from the proposition that we have a cofibrant replacement
functor & and a fibrant replacement functor ', given by &(-) = &- and '(-) = '-,
where &- and '- are the cofibrant replacement of - and fibrant replacement of -
respectively. The justification for & and ' being functors and not just maps of objects
follows directly from the definition of '- and &- in the proof of Proposition 3.9. Since
(0, 1) and (2, 3) are functorial factorizations we have that the following diagrams are
commutative for any other morphism 5 : - → .

∅ &- -

∅ &. .

- '- ∗

. '. ∗

0(∅→-) 1(∅→-)

0(∅→. ) 1(∅→. )

5id∅ &( 5 )

5

2(-→∗) 3 (-→∗)

'( 5 )

2(.→∗) 3 (.→∗)

id∗

where &( 5 ) and '( 5 ) are the unique morphisms such that these two diagrams are
commutative.

By uniqueness of &( 5 ) and '( 5 ), &(id-) = id&- and '(id-) = id'- .
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Composition is given by the fact that (0, 1) and (1, 2) are functorial, meaning that
for two composable maps 6 5 : - → . → / we have 01(6 5 ) = 0(6 5 )1(6 5 ) and
23 (6 5 ) = 2(6 5 )3 (6 5 ). We have the following commutative diagrams.

∅ &- -

∅ &. .

∅ &. .

∅ &/ /

0(∅→-) 1(∅→-)

0(∅→. ) 1(∅→. )

5id∅ &( 5 )

0(∅→/)

id∅

0(∅→. ) 1(∅→. )

&(6)

1(∅→/)

6

It is clear that 6 5 1(∅ → -) = 61(∅ → . )&( 5 ) = 61(∅ → . )&( 5 ) = 1(∅ → /)&(6)&( 5 ).
Thus &(6)&( 5 ) is such that the following diagram is commutative.

∅ &- -

∅ &/ /

0(∅→-) 1(∅→-)

0(∅→/) 1(∅→/)

id∅ 6 5&(6)&( 5 )

By uniqueness of the map &- → &/ for which this diagram is commutative we conclude
that &(6 5 ) = &(6)&( 5 ).

The same reasoning shows that '(6 5 ) = '(6)'( 5 ). Therefore ' and & are indeed
functors.

Theorem 3.10. Let M be a model category. A map 5 is a

� cofibration if and only if 5 has the left lifting property with respect to all trivial
fibrations,

� trivial cofibration if and only if 5 has the left lifting property with respect to all
fibrations,

� fibration if and only if 5 has the right lifting property with respect to all trivial
cofibrations,

� trivial fibration if and only if 5 has the right lifting property with respect to all
cofibrations.

Proof. Cofibrations are by definition in ;; ?(W ∩ F ) and fibrations in A; ?(W ∩ C). We
will first show that ;; ?(W ∩ F ) ⊂ C and A; ?(W ∩ C) ⊂ F .

Let 5 : � → � with 5 ∈ ;; ?(W ∩ F ). We can factorize 5 into 6 : � → - and
ℎ : - → � where 6 ∈ C and ℎ ∈ F ∩ W. Since 5 ∈ ;; ?(WF ) there exists a lift
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9 : �→ - as in the following diagram

� -

� �

9

6

ℎ5

id

It is easy to see that 5 is a retract of 6 since we have the following diagram which exhibits
6 as a retract of 5 .

� � �

� - �

id id

5 6 5

9 ℎ

id

id

Since retracts of cofibrations are themselves cofibrations by definition, we know that 5 is
a cofibration. Therefore ;; ?(W ∩ F ) ⊂ C.

Proving that A; ?(W ∩ C) ⊂ F can be done in a similar manner. Suppose 5 : �→ �

has the right lifting property with respect to all trivial cofibrations. Let 5 = ?8 be a
factorization such that 8 is a trivial cofibration and ? a fibration. Since 5 has the right
lifting property with respect to all trivial cofibrations, in particular with respect to 8, we
have the following diagram.

� �

. �

id�

8

?

5

By Lemma 2.19, this diagram exhibits 5 as a retract of ?. Since a retract of a fibration
is also a fibration, we conclude that 5 is a fibration and therefore A; ?(W ∩ C) ⊂ F .

The only remaining claim to prove is that a map is a trivial cofibration if and only if
it has the left lifting property with respect to all fibrations and dually, a trivial fibration
if and only if it has the right lifting property with respect to all cofibrations.

Suppose 5 : - → . is a trivial cofibration. This implies that any fibration has the
right lifting property with respect to 5 and therefore 5 has the left lifting property with
respect to all fibrations.

Conversely, suppose 5 has the left lifting property with respect to all fibrations. Factor
5 = ?8, where 8 is a trivial cofibration and ? is a fibration, using one of the two functorial
factorizations from the axioms for model categories.

- .̃

. .

8

?5

id.
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By Lemma 2.19, this diagram exhibits 5 as a retract of 8 since 5 has the left lifting
property with respect to ?. This implies that 5 is a trivial cofibration since a retract of
a trivial cofibration is a trivial cofibration.

Suppose now that 5 : - → . is a trivial fibration. This implies that any cofibration has
the left lifting property with respect to 5 and therefore 5 has the right lifting property
with respect to any cofibration.

Conversely, suppose 5 has the right lifting property with respect to any cofibration.
Factor 5 = ?8, where 8 is a cofibration and ? is a trivial fibration.

- -

.̃ .

id-

58

?

Relying once more on Lemma 2.19, we find that this diagram exhibits 5 as a retract of ?
because 5 has the right lifting property with respect to 8. Since any retract of a trivial
fibration is again a trivial fibration, we conclude that 5 must be a trivial fibration, as
desired. �

Theorem 3.11. Let M be a model category. Then the class of cofibrations and the
class of fibrations are closed under composition.

Proof. By Theorem 3.10 we know that we can express cofibrations as ;; ?(W ∩ F ) and
fibrations as A; ?(W ∩ C). By 2.25 we know that both those classes are closed under
composition. Therefore the composition of two cofibrations or two fibrations yields a
cofibration or fibration respectively. �

Lemma 3.12. Let M be a model category and 5 : - → . a weak equivalence of M.
Then 5 factors through an object / as an acyclic cofibration and a subsequent acyclic
fibration.

Proof. Let 5 : - → . be a weak equivalence of M. Since we are in a model category M
there exist two functorial factorizations. We can show the statement of the lemma using
either one of the two.

One of the two factorizations gives us a factorization 5 = ?8, where 8 is a cofibration
and ? is an acyclic fibration. Since 5 is a weak equivalence ?8 is as well and thanks to ?
being an acyclic fibration ? is also a weak equivalence. By the 2-out-of-3 property that
holds for weak equivalences in model categories this means that ?, 8 and ?8 are weak
equivalences.

Thus 8 is in fact an acyclic cofibration and not just a cofibration. �

Lemma 3.13. Let M be a model category and 5 : - → . a weak equivalence between
objects - and . which are both cofibrant and fibrant objects of M. Then there exists
a factorization - → / → . where - → / is an acyclic cofibration, / → . an acyclic
fibration and / is a cofibrant and fibrant object.

Proof. The existence of an object / such that the factorization of - → . through /

consists of an acyclic cofibration followed by an acyclic fibration follows directly from
Lemma 3.12.

To show that / is a cofibrant and fibrant object, we only need to verify that / → ∗
is a fibration and that ∅ → / is a cofibration. Since - and . are both cofibrant and
fibrant, we know that ∅ → - is a cofibration and . → ∗ is a fibration.
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By Theorem 3.11 cofibrations and fibrations are closed under composition. Therefore
∅ → - → / is a cofibration and / → . → ∗ is a fibration. Since / → ∗ and ∅ → /

are unique morphisms, they must coincide with the cofibration and fibration and thus
the unique morphisms / → ∗ and ∅ → / are a fibration and a cofibration respectively.
Therefore / is both a fibrant and cofibrant object. �

Definition 3.14. Let M be a model category and - an object of M. A path object for
-, denoted as Path(-), is a factorization of the diagonal ∇- : - → - × -

∇- : -
8→ Path(-)

(0,1)
→ - × -,

where 8 is a weak equivalence.
If in addition (0, 1) : Path(-) → - × - is a fibration, we say that Path(-) is a good

path object.

Definition 3.15. Let M be a model category and - an object of M. A cylinder object
for -, denoted as Cyl(-), is a factorization of the codiagonal Δ- : - t - → -

Δ- : - t -
(0,1)
→ Cyl(-) 8→ -,

where 8 is a weak equivalence.
If in addition (0, 1) : - t - → Cyl(-) is a cofibration, we say that Cyl(-) is a good

cylinder object.
If (0, 1) is a cofibration and 8 is an acyclic fibration we say that Cyl(-) is a very good

cylinder object.

Remark. It is important to point out that the codiagonal and diagonal the above
definitions are not related to the diagonal functor that we introduced in 2.14.

Lemma 3.16. Let M be a model category and let - be an object of M. Then there
exists a very good cylinder object Cyl(-).
Proof. Let Δ- : - t - → - be the codiagonal from the coproduct of - to -. Using one
of the two functorial factorizations that come from the definition of a model category, we
get a factorization Δ- = ?8, where 8 is a cofibration and ? is an acylic fibration. We get a
very good cylinder object Cyl(-) in the form of the target of the map ? or equivalently
the source of the map 8. �

Definition 3.17. Let M be a model category and 5 , 6 : - → . two morphisms of M.

� A left homotopy �! : 5 → 6 is a morphism �! : Cyl(-) → . such that the
following diagram is commutative.

- Cyl(-) -

.

5
�! 6

� A right homotopy �' : 5 → 6 is a morphism �' : - → Path(. ) such that the
following diagram is commutative.

-

. Path(. ) .

65
�'
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Definition 3.18. A model category M is cofibrantly generated if there exist two small
sets �,� of morphisms of M such that

� cof (�) = C,

� cof (�) =W ∩ C,

� � and � allow for the small object argument, that is to say that the assumptions of
the small object argument 2.37 are satisfied,

where W are the weak equivalences and C the cofibrations of the model structure of M.

Remark. Since � and � are assumed to permit the small object argument in the definition
given above, we can simplify cof (�) and cof (�) using the small object argument. It is
easy to see that we have cof (�) = llp(rlp(�)) and cof (�) = llp(rlp(�)) and moreover we
have F = rlp(�) and W ∩ F = rlp(�).

Definition 3.19. A model category M is said to be combinatorial if its underlying
category is a locally presentable category (see Appendix 6.8) and its model structure is
cofibrantly generated.

Lemma 3.20. Let - t - → Cyl(-) → - be a good cylinder object for some cofibrant
object - of a model category M. Then both components of the map - t - → Cyl(-)
are trivial cofibrations.

Dually, given a good path object - → Path(-) → - × - for some fibrant object -,
then both components of the map Path(-) → - are trivial fibrations.

Proof. We have two inclusions of the form 80, 81 : - → - t - → Cyl(-). These are
clearly cofibrations since they can be obtained as the pushout of the cofibration ∅ → -.
To be more precise, suppose we have a trivial fibration 5 : � → � and the following
commutative square

- �

- t - �

9 5

Adding the cofibration ∅ → - to the commutative square as follows

∅ - �

- - t - �

9 58

where 8 is a cofibration since - is a cofibrant object of M, allows us to find a lift
ℎ : - → � as in the following diagram.

∅ - �

- - t - �

9 58
ℎ
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By the universal property of the pushout we therefore have the following commutative
diagram:

∅ - �

- - t - �

9 58
ℎ

ℎ̃

This diagram clearly shows that the commutative square consisting of 9 : - → - t -
and 5 : �→ � from above has a lift in the form of ℎ̃ : - t - → �. Therefore 9 has the
left lifting property with respect to all trivial fibrations and therefore 9 is a cofibration
by 3.10.

This implies that both natural inclusions - → - t - are cofibrations. Since - t - →
Cyl(-) is a cofibration so are the two maps 80, 81 : - → Cyl(-) since each of them
is a composition of one of the two natural inclusions - → - t - and the cofibration
- t - → Cyl(-).

The fact that they are also weak equivalences follows from the 2-out-of-3 property.
Clearly 83- : - → - t - → Cyl(-) → - and Cyl(-) → - are weak equivalences. By
the 2-out-of-3 property that holds for model categories this means that 83- , Cyl(-) → -,
80 and 81 are all weak equivalences.

The second part of the lemma is formally dual. �

Lemma 3.21. Let M be a model category and [ : 5 ⇒! 6 : - → . a left homotopy,

where . is a fibrant object. Then for any good cylinder object �Cyl(-) for - there exists
a commutative diagram of the form

- �Cyl(-) -

.

5
[̃

6

Dually, if [ : 5 ⇒' 6 : - → . is a right homotopy, where - is a cofibrant object, then

for any good path object �Path(-) for -, there is a commutative diagram of the form

-

. �Path(-) .

6[̃5

Proof. Let [ : Cyl(-) → . be a given left homotopy. Using the factorization from the

definition of a model category, we can factor [ as [ : Cyl(-) ∈C→ /
∈W∩F→ . .

We have the following two diagrams

- t - Cyl(-) / Cyl(-) .

�Cyl(-) . / ∗

∈C

∈C

∈W∩F

[

∈C ∈W∩F
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Since cofibrations have the left-lifting property with respect to acyclic fibrations, we
can find liftings

- t - Cyl(-) / Cyl(-) .

�Cyl(-) . / ∗

∈C

∈C

∈W∩F

[

∈C ∈W∩Fik

We claim that [̃ := i ◦ k yields the desired left homotopy for �Cyl(-). We have

Cyl(-)

- / . -

�Cyl(-)

k

i

6

5

From this diagram we extract the diagram

- �Cyl(-) -

.

65 [̃

which is what we wanted to show.
The second statement in the lemma is formally dual. �

Lemma 3.22. Let M be a model category and 5 , 6 : - → . two parallel morphisms.

� If - is cofibrant, then the existence of a left homotopy 5 ⇒! 6 implies the existence
of a right homotopy 5 ⇒' 6 for any good path object.

� If . is fibrant, then the existence of a right homotopy 5 ⇒' 6 implies the existence
of a left homotopy 5 ⇒! 6 for any good cylinder object.

Proof. Let [ : Cyl(-) → . be the given left-homotopy. Using 3.21 we assume that
Cyl(-) is a good cylinder object, otherwise we replace it. By 3.20 we have a lift in the
following diagram

- Path(. )

Cyl(-) . × .

∈FW∩C3
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since fibrations have the right lifting property with respect to acyclic cofibrations. This
means that there exists ℎ : Cyl(-) → Path(. ) such that we get a commutative diagram.

- Path(. )

Cyl(-) . × .

∈FW∩C3 ℎ

It is easy to see that [ := ℎ ◦ 8 is the desired right homotopy. �

Proposition 3.23. Let M be a model category, - a cofibrant object and . a fibrant
object. Then the existence of a left-homotopy 5 ⇒! 6 and right homotopy 5 ⇒' 6

coincide and form equivalence relations for the hom set Hom(-,. ).

Proof. The fact that the existence of a left-homotopy coincides with the existence of a
right-homotopy is a direct consequence of 3.22.

To show that we have an equivalence relation for the hom set, we first remark that
symmetry and reflexivity are obvious. We only have to show transitivity.

Suppose we have two left homotopies 5 ⇒! 6 : - → . and 6 ⇒! ℎ : - → . . Using
3.21 we can exhibit these left homotopies in the form of two commutative diagrams:

- Cyl(-) - - Cyl(-) -

. .

5
k 6

80 81

6

80 81

i
ℎ

We now consider the following diagram

-

- Cyl(-)

- Cyl(-) Cyl(-) t Cyl(-)

-

80

81

81

80

which we obtain by considering the pushout to insert Cyl(-) tCyl(-). This implies that
Cyl(-) t Cyl(-) is a cylinder object and we naturally have the following commutative
diagram

- Cyl(-) t Cyl(-) -

- -

.

(i,k)

65 6 ℎ
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which shows that (i, k) : Cyl(-) t Cyl(-) → . is a left homotopy 5 ⇒! ℎ as desired.
This means that the left-homotopy relation is transitive. �

We will now present a few simple examples of model categories before discussing model
structures for the category Top of topological spaces.

Example 3.24. Let M be a bicomplete category. We can impose three distinct model
structures onM by choosing one of the three distinguished classes of morphism (W, F , C)
as the class of isomorphisms of M and the other two classes to be all morphisms. As
an example, let 5 : - → . be a weak equivalence if and only if it is an isomorphism
and let any morphism in M be a fibration and a cofibration. Suppose that 5 and 6 are
morphisms of M and 6 5 is defined and suppose that 2-out-of-3 of 5 , 6 and 6 5 are weak
equivalences, i.e. isomorphisms, then so is the third.

In fact, suppose 5 : - → . and 6 : . → / are isomorphisms, then so is 6 5 : - → /

trivially.

If 5 and 6 5 are isomorphisms, then 5 : - → . has an inverse ℎ : . → - such
that 5 ℎ = 1. and ℎ 5 = 1- and 6 5 : - → / has an inverse ; : / → - such that
6 5 ; = 1/ and ;6 5 = 1- . This means that 5 ; is the inverse of 6 since 6 5 ; = 1/ and
5 ;6 = 5 ;6 5 ℎ = 5 1-ℎ = 5 ℎ = 1. , thus 6 is an isomorphism.

If 6 and 6 5 are isomorphisms, then 6 has an inverse ℎ and 6 5 has an inverse ;
and we have 6ℎ = 1/ , ℎ6 = 1. , 6 5 ; = 1/ and ;6 5 = 1- . It is trivial to see that 5

has an inverse, specifically the inverse of 5 is given by ;6 and we have ;6 5 = 1- and
5 ;6 = ℎ6 5 ;6 = ℎ1/6 = ℎ6 = 1. .

Therefore the 2-out-of-3 property holds.

Suppose 5 is a retract of 6. Since all morphisms are fibrations and cofibrations, we
only need to check that if 6 is a weak equivalence, i.e. an isomorphism, then so is 5 .
This is easy to verify. Since 5 is a retract of 6 we have a commutative diagram

� � �

� � �

8 A

65

9 ?

5

1�

1�

We need to show that 5 has an inverse. Since 6 is an isomorphism, there exists a morphism
ℎ : � → � such that 6ℎ = 1� and ℎ6 = 1� . Therefore we have 1� = A8 = Aℎ68 = Aℎ 9 5
and 1� = ? 9 = ?6ℎ 9 = 5 Aℎ 9 and thus we see that Aℎ 9 is the inverse of 5 and therefore 5

is an isomorphism and thus a weak equivalence.

To verify that cofibrations have the left lifting property with respect to morphisms in
W∩F and fibrations have the right lifting property with respect to morphisms inW∩C
we remark that W ∩ F =W ∩ � =W, i.e. trivial fibrations and trivial cofibrations are
exactly the weak equivalences. So we need to verify that cofibrations have the left lifting
property with respect to isomorphisms and fibrations have the right lifting property with
respect to isomorphisms.

Let 5 : - → . be an isomorphisms, 6 : �→ � a cofibration and ℎ : � → � a fibration.
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Suppose we have the following commutative diagram.

� - �

� . �

i

k

56 ℎ

k̃

ĩ

Since 5 is an isomorphism there must be an inverse, say ; : . → - such that 5 ; = 1.
and ; 5 = 1- .

Is is easy to see that ;k : �→ - and ĩ; : �→ � are such that the following diagram
is commutative.

� - �

� . �

i

k

56 ℎ

k̃

ĩ

;k ĩ;

Lastly, we need to define two functorial factorizations (0, 1) and (2, 3) onM such that
for any morphism 5 : - → . we have 0 5 ∈ C, 1 5 ∈ W ∩ F , 2 5 ∈ W ∩ C and 35 ∈ F .

We define 0 and 3 to be the identity functors and 1( 5 ) to be the identity of the
codomain of 5 and 2( 5 ) to be the identity of the domain of 5 .

It is trivial to see that 0 5 ∈ C and 35 ∈ F , since F = C are all morphisms ofM. Since
1( 5 ) = 1. it is clearly an isomorphism and thus in W ∩ F =W and the same holds for
2 5 = 1- ∈ W ∩ C. We will leave it to the reader to verify that as defined (0, 1) and
(2, 3) are indeed functorial factorizations.

Example 3.25. Given two model categories M1 and M2 there exists a natural model
structure for the product categoryM1×M2, given by (W1×W2, F1×F2, C1×C2), where
(W1, F1, C1) and (W2, F2, C2) are the model structures ofM1 andM2 respectively. This
is the so called product model structure.

Remark. From example 3.24 it is clear that for a given category we can find multiple
model structures that are not necessarily equivalent. For now we will not clarify what
we mean by two model structures being equivalent since there are multiple ways in
which model structures can be equivalent. We will discuss various notions of equivalence
between model structures at a later point, in particular when we introduce the notion of
Quillen equivalence.

§3.2 The homotopy category of a model category

Model categories provide a natural context in which to carry out homotopy theory. We
will now make this statement more concrete and obvious to the uninitiated by introducing
the notion of the homotopy category of a model category. While we will introduce the
notion of a homotopy category for categories endowed with strictly weaker structures
than model structures in a subsequent section, doing so will be much more abstract. One
of the biggest advantages that we have when working with model categories is that we
can give a relatively explicit construction of the homotopy category of a model category.

Definition 3.26. LetM be a model category with weak equivalencesW, cofibrations C
and fibrations F . The homotopy category ofM, denoted by HoM is the category whose
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� objects are given by objects that are both fibrant and cofibrant in the model
category M,

� morphisms are homotopy classes of morphisms of M, i.e. equivalences classes of
morphisms under left homotopy.

Remark. Since HoM is unique up to equivalence of categories, we speak of the homotopy
category of the model category M.

Once we introduce the notion of homotopy categories for categories with weaker
structures than that of a model structure, we will not be able to provide as concrete
of a description of the homotopy category of a category and instead will define the
homotopy category using a universal property. Nonetheless, the reader may already get
a rather good glimpse of the universal property of the homotopy category as a result of
the following result.

Theorem 3.27. Let M be a model category. A weak equivalence between two ob-
jects which are fibrant and cofibrant is a homotopy equivalence, that is turns into an
isomorphism in HoM.

Proof. Let 5 : - → . be a weak equivalence in M and suppose that - and . are both
fibrant and cofibrant. By lemma 3.12, we know that 5 factors through some object /
as the composition of an acyclic cofibration and an acyclic fibration. By lemma 3.13 -
and . are each fibrant and cofibrant, this must also be true for / . This means that our
job is much easier since it means that we only have to show that acyclic fibrations and
acyclic cofibrations between objects that are both fibrant and cofibrant are homotopy
equivalences.

Using above reasoning, suppose that 5 : - → . is an acyclic fibration with - and .
each being fibrant and cofibrant. We summarize in the form of the following commutative
diagram

∅ -

. .

5

1.

6

where 6 is a cofibration since . is cofibrant.

By definition of model categories, cofibrations have the left lifting property with respect
to acyclic fibrations and therefore 6 has the left lifting property with respect to 5 , which
means there exists a morphism A : . → - such that the following diagram is commutative.

∅ -

. .

5

1.

6 A

Clearly A is a right inverse of 5 since 5 A = 1. . We need to show that A is a left
inverse of 5 up to left homotopy. Let Cyl(-) be any very good cylinder object on
-, whose existence of follows from lemma 3.16. This means we have a factorization
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- t - 8→ Cyl(-)
?
→ -, where 8 is an cofibration and ? is an acyclic fibration and we

have the following diagram

- t - -

Cyl(-) .

(A 5 ,1- )

5

5 ?

8

where 8 ∈ C and ? ∈ W ∩ F .
This diagram is commutative since A is a right inverse of 5 . By this we mean

that in the above diagram, if we compose (A 5 , 1-) with 5 we end up with a map
( 5 A 5 , 5 1-) : - t - → . and since A is a right inverse of 5 this is the same as the
map ( 5 , 5 1-) = ( 5 , 5 ) and since ∇ is the codiagonal with factorization through Cyl(-)
via maps 8 : - t - → Cyl(-) and ? : Cyl(-) → - we have 5 ?8 : - t - → . with
5 ?8 = 5∇ = 5 (1- , 1-) = ( 5 , 5 ) and thus the diagram is indeed commutative. Since
cofibrations have the left lifting property with respect to acyclic fibrations, we know
that there exists a lift ℎ : Cyl(-) → - such that (A 5 , 1-) = ℎ8 and 5 ? = 5 ℎ. Clearly
this implies that we have the following commutative diagram, which exhibits ℎ as a left
homotopy between 1- and A 5 and thus A is a left inverse of 5 up to left homotopy, which
means that 5 is indeed a homotopy equivalence.

- Cyl(-) -

-

81 82

A 5 1-
ℎ

�

Proposition 3.28. Let M be a model category. Denote by M2,M 5 ,M2 5 the full
subcategories of cofibrant, fibrant, cofibrant and fibrant objects of M. The inclusion
functors M2 5 →M2 →M and M2 5 →M 5 →M induce equivalences of the homotopy
categories of all subcategories and the model category M.

Proof. Let M2

8→ M be the inclusion of M2 into M. The map 8 clearly preserves
weak equivalences, since any weak equivalence between two cofibrant objects is a weak
equivalence inM as well. This means that 8 induces a functor Ho(8) : Ho(M2) → Ho(M).

We need to show that there exists an inverse functor of Ho(8). We claim that the
cofibrant replacement functor & acts as the inverse of Ho(8). For any object -, the
cofibrant replacement functor & yields a cofibrant object &-. Moreover, we have a

natural trivial fibration &-
1(∅→-)
→ -.

It is obvious that & preserves weak equivalences by the 2-out-of-3 property for weak
equivalences, since the functorial factorization of ∅ → - and ∅ → . yields trivial
fibrations 1(∅ → -) : &- → - and 1(∅ → . ) : &. → . that commute with any weak
equivalence 5 : - → . , that is 5 1(∅ → -) = 1(∅ → . )&( 5 ) and therefore 1(∅ → . )&( 5 )
is a weak equivalence since 1(∅ → -) and 5 are. Using the 2-out-of-3 property for weak
equivalences one more time, we conclude that &( 5 ) is a weak equivalence since 1(∅ → . )
and 1(∅ → . )&( 5 ) are weak equivalences. Therefore if 5 : - → . is a weak equivalence,
then so is &( 5 ) and therefore & preserves weak equivalences.
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Therefore, & induces a functor Ho(&) : Ho(M) → Ho(M2) and both & and 8 are so
called homotopical functors.

Since the maps &- → - and - → &- are weak equivalences and commute appro-
priately with any other map 5 : - → . , we have natural transformations & ◦ 8 → 1M2

and 8 ◦ & → 1M and those two maps are natural weak equivalences. This natural
transformation induces two natural transformations Ho(8) ◦ Ho(&) → 1Ho(M2) and
Ho(&) ◦ Ho(&) → 1Ho(M). Since on the component level the natural transforma-
tion is always a weak equivalence, the induced natural transformations must be iso-
morphisms on the component level, which shows that we have natural isomorphisms
Ho(8) ◦Ho(&) → 1Ho(M2) and Ho(&) ◦Ho(&) → 1Ho(M) and thus Ho(&) and Ho(8) form
an equivalence of categories and act as each others inverse.

Similarly, we can show that Ho(M 5 ) → Ho(M) is an equivalence of categories. The
argument is completely dual to what we already showed, instead relying on the fibrant
replacement functor ' and the inclusion.

Once the equivalences Ho(M 5 ) → Ho(M) and Ho(M2) → Ho(M) are shown, the
remaining equivalences follow directly, since the inclusion of both fibrant and cofibrant
objects into the cofibrant or fibrant subcategory respectively corresponds to the already
settled cases. �

§3.3 Examples of model categories

3.3.1 Model structure on topological spaces

We have previously noted that model categories present a natural setting in which to
carry out homotopy theory. For this to be true in a meaningful sense there must be a way
to reconcile classical homotopy theory of topological spaces and the more abstract setting
of model categories. As we shall see, this is entirely possible by way of introducing a
model structure on the category of topological spaces that results in a homotopy theory
that coincides with our classical understanding of homotopy theory. We will introduce
two distinct model structures for topological spaces.

As we remarked before, a category can potentially be given multiple model structures
that are not necessarily equivalent to each other. This is indeed the case for the category
Top of topological spaces.

Example 3.29. Let Top be the category of topological spaces. A map 5 : - → . is

� a weak equivalence if 5 is a weak homotopy equivalence,

� a fibration if 5 is a Serre fibration,

� a cofibration if 5 is a retract of some map - → / where / is constructed by
attaching cells to -.

The category Top along with this model structure yields a homotopy category Ho(Top)
that is equivalent to the standard homotopy category of CW-complexes.

Every object is fibrant, cofibrant objects are given by spaces which are retracts of
generalized CW complexes, where generalized means that we do not require cells to be
attached in order of their dimension.

Remark. The model structure for the category of topological spaces in the example above
defines weak equivalences as weak homotopy equivalences. One may wonder whether it
is also possible to define weak equivalences to be ordinary homotopy equivalences. As we
will see in the following example, this is indeed possible.
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Example 3.30. Let Top be the category of topological spaces. A map 5 : - → . is

� a weak equivalence if 5 is a homotopy equivalence,

� a fibration if 5 is a Hurewicz fibration,

� a cofibration if 5 is a closed Hurewicz cofibration.

The category Top along with this model structure yields a homotopy category Ho(Top)
that is equivalent to the standard homotopy category of topological spaces.

3.3.2 Model structure for modules

We will now discuss model structures for the category of modules over a ring '. This is
primarily motivated by the example of not Quillen equivalent model categories that we
will discuss later on, since both model categories that we will be looking at are categories
of modules over two particular rings. In this part we will closely follow Hovey [13],
Section 2.2. This is also where proofs for some results presented in this section may be
found.

We first recall some basic definitions concerning rings and modules.

Definition 3.31. Let ' be a ring. An '-module & is called an injective module if any
short exact sequence

0→ & → # → " → 0

of '-modules is a split exact sequence.
Similarly, an '-module % is called a projective module if any short exact sequence

0→ # → " → %→ 0

of '-modules is a split exact sequence.

Definition 3.32. Let ' be a ring and 5 , 6 : " → # two maps between '-modules #
and ". We say that 5 and 6 are stably equivalent if 5 − 6 factors through a projective
module, that is to say we can find a factorization of 5 − 6 : " → % → # where % is a
projective module.

Stable equivalence is an equivalence relation.

Lemma 3.33. As defined above, the notion of stable equivalence holds under composition.
By this we mean that if 5 ∼ 6 are stably equivalent and ℎ and : are maps such that ℎ 5 ,
ℎ6, 5 :, 6: are defined, then 5 ∼ 6 implies that ℎ 5 ∼ ℎ6 and 5 : ∼ 6:.

Proof. Let 5 , 6 : " → # be stably equivalent and let ℎ : # → $ and : : & → # be
maps between '-modules.

Since 5 ∼ 6, there exists a factorization of 5 − 6 = ?8 through some projective module
%, where 8 : " → % and ? : %→ # . Since we are working with maps between '-modules
we have ℎ 5 − ℎ6 = ℎ( 5 − 6). Therefore ℎ( 5 − 6) = ℎ?8 = (ℎ?)8 and therefore ℎ 5 − ℎ6
factors through the same projective module % as 5 − 6. �

Definition 3.34. Let ' be a ring. We define the stable category of '-modules as the
category whose objects are left '-modules and morphisms are given by stable equivalence
classes of maps between '-modules.

Definition 3.35. A ring ' is called a Frobenius ring if injective and projective modules
coincide, that is to say that every injective module is a projective module and vice-versa.
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It turns out that if ' is a Frobenius ring, then the stable category of '-modules
happens to be homotopy category of a particular model structure placed on top of the
category of '-modules. In fact this particular model structure turns out to be cofibrantly
generated.

Definition 3.36. Let ' be a Frobenius ring. Let � be the set of inclusions of left ideals
of ' into ' and � the set of inclusions of the zero ideal into '.

We say that a map 5 of '-modules is a fibration if it has the right lifting property
with respect to � and a cofibration if 5 ∈ cof (�) (see 2.35).

Lemma 3.37. Let ' be a Frobenius ring and let 5 : " → # be a map of '-modules.
Then

� 5 is a fibration if and only if it is surjective,

� 5 is a trivial fibration if and only if ? is a surjection and its kernel is a projective
module.

Proposition 3.38. Let ' be a Frobenius ring. A map of '-modules is in inj(�) if and
only if it is a surjection with injective kernel. Moreover, inj(�) is given exactly by trivial
fibrations.

Lemma 3.39. Let ' be a Frobenius ring. A map of '-modules is in cof (�) if and only
if it is an injection.

Lemma 3.40. Let ' be a Frobenius ring. A map of '-modules is in cof (�) if and only
if it is an injection with projective cokernel. Moreover, all maps in cof (�) are stable
equivalences.

Theorem 3.41. Let ' be a Frobenius ring. There exists a cofibrantly generated model
structure on the category of '-modules with cofibrations given by injections, fibrations
by surjections and weak equivalences by stable equivalences.

We call this model category the stable module category of the ring ' or the model
category of stable modules over ' and denote it by Stmod(').

Proposition 3.42. The cofibrantly generated model structure on the category of '-
modules has the following properties:

� Every object is cofibrant and fibrant.

� Two maps 5 , 6 between '-modules are stably equivalent if and only if they are left
or right homotopic in the cofibrantly generated model structure.

§3.4 Weaker structures than model categories

Many interesting properties and results surrounding model categories show up in one way
or another when we do not require a category to have a model structure but instead a
weaker and more general structure. We will introduce two notions that are weaker than
the notion of a model structure in the form of homotopical categories and categories
with weak equivalences. In many ways model categories are important precisely because
they provide a more tangible and concrete context than for instance (∞, 1)-categories.

Definition 3.43. A homotopical category is a category with a distinguished class of
morphisms, the so called weak equivalences, such that
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� every identity map is a weak equivalence,

� weak equivalences have the 2-out-of-6 property: For any triple of morphisms

�
5
→ �

6
→ �

ℎ→ � it holds that if ℎ6 and 6 5 are weak equivalences, then so are
5 , 6, ℎ and ℎ6 5 .

Remark. Every model category is trivially a homotopical category.

Definition 3.44. A category with weak equivalences is a category C along with a
subcategory W ⊂ C such that

1. W contains all isomorphisms of C,

2. W satisfies the 2-out-of-3 property: for any two composable morphisms 5 , 6 of C,
if two out of 5 , 6, 6 5 are in W, then all of them are.

Remark. Every homotopical category is a category with weak equivalences. This follows
from the fact that the 2-out-of-6 property along with all identity maps being weak
equivalences implies the 2-out-of-3 property.

In our introduction of the notion of the homotopy category of a model category we
justified the claim that model categories provide a natural context in which to carry
out homotopy theory. We will now quickly touch on how we can associate a homotopy
category to weaker structures than model structures. This will also provide a very
good argument in favor of working with the stronger model structure instead of weaker
structures introduced in the previous section.

Definition 3.45. Let M be a category with weak equivalences W. The ”homotopy
category” HoM is constructed by adding inverses for all weak equivalences. More precisely,
we consider the free category generated by M and formal inverses F−1 for each F ∈ W,
where F−1 : . → - for F : - → . , whose objects coincide with objects of M and
morphisms are given by finite strings ( 51, . . . , 5=) of morphisms such that the morphisms
can be composed and each morphism in a given string is either a morphism of M or
a formal inverse F−1 for some F ∈ W. The composition in this free category is given
by concatenation of strings and the identity element at a given object is given by an
empty string. HoM is obtained as a quotient category of this free category under the
equivalence relations

� for any - ∈ M we have 1- = (1-),

� for morphisms 5 , 6 of M that are composable we have ( 5 , 6) = (6 5 ),

� for any weak equivalence F : - → . we have (F, F−1) = 1- and (F−1, F) = 1. .

Remark. At this point it is extremely important to remark that as defined above, HoM
is not necessarily a category. In fact, requiring that M is a model category and not just
a category with a choice of weak equivalences guarantees that HoM is an actual category.
For a full proof of this result the reader may consult [13], specifically Theorem 1.2.10.

Proposition 3.46. Let M be a category with weak equivalences. If the homotopy
category HoM exists, then it is the unique, up to equivalence of categories, category
which is universal with respect to the existences of a functor & :M → HoM that sends
every weak equivalence in M to an isomorphism in HoM.
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Remark. It is unfortunate that many authors denote the homotopy category of a
category M by HoM, since the homotopy category of M depends on the choice of
weak equivalences. Sometimes less ambiguous notations are used, such as W−1M or
M[W−1], which highlights the fact that the homotopy category of a category M with
weak equivalences W is in fact the localization of M at the weak equivalences W.
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§4 Quillen Equivalence

Since model categories are categories we naturally have a notion of equivalence of two
model categories in the form of the categorical equivalence. However, this is not the
correct notion of equivalence for model categories. This is where the notion of Quillen
equivalence comes in. Before we define what a Quillen equivalence is we will define Quillen
functors and introduce the notion of derived functors. After the relevant definitions we
will attempt to provide a concise and coherent exposition on the relevance of Quillen
equivalence.

§4.1 Definitions and basic results

Definition 4.1. Let M1 and M2 be two model categories. A pair of adjoint functors

(!, ') :M1

!−→←−
'

M2,

where ! is the left adjoint and ' the right adjoint is a Quillen adjunction if the following
equivalent conditions are satisfied:

� ! preserves cofibrations and trivial cofibrations,

� ' preserves fibrations and trivial fibrations,

� ! preserves cofibrations and ' preserves fibrations,

� ! preserves trivial cofibrations and ' preserves trivial fibrations.

If (!, ') is a Quillen adjunction, we sometimes say that ! is a left Quillen functor and
' is a right Quillen functor. This can be useful if we know that there exists a Quillen
adjunction, but we are only interested in one of the two functors of the adjunction.

Remark. For the sake of completeness, we will provide a full proof that the conditions
in the definition above are indeed equivalent. This result is usually left as an exercise in
most literature on the subject, or only proven partially.

Proposition 4.2. The conditions in the definition above are equivalent.

Proof. We first show that a left adjoint ! :M2 →M1 preserves trivial cofibrations if
and only if its right adjoint ' :M1 →M2 preserves fibrations.

Suppose that ! preserves trivial cofibrations and let 5 : - → . be a fibration in M1

and 6 : -̃ → .̃ a trivial cofibration in M2. Since (!, ') is a pair of adjoint functors, we
have a natural isomorphism homM2 (!�, �) ' homM1 (�, '�) for � ∈ M1 and � ∈ M2.
This means that we have the left diagram if and only if we have the right diagram of the
following two diagrams.

-̃ '- !-̃ -

.̃ '. !.̃ .

6 ' 5 !6 5

Since 5 is a fibration and 6 is a trivial cofibration, the right diagram above has a lift
ℎ : !.̃ → - because fibrations have the right lifting property with respect to trivial
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cofibrations. Since we have a isomorphism homM1 (!.̃ , -) ' homM1 (.̃ , '-), there exists
a map ℎ̃ : . → '- and by naturality of the isomorphism between the hom sets this is a
lift of the left diagram. Therefore ' 5 has the right lifting property with respect to the
trivial cofibration 6. By 3.10 we know that fibrations are given exactly by maps that
have the right lifting property with respect to trivial cofibrations. Therefore ' 5 is a
fibration and therefore ' preserves fibrations.

Suppose now that ' preserves fibrations, that is to say that ' 5 is a fibration. We
want to show that !6 is a trivial cofibration. We consider the same two commutative
diagrams as above.

-̃ '- !-̃ -

.̃ '. !.̃ .

6 ' 5 !6 5

The left diagram has a lift ℎ : .̃ → '- because 6 is a trivial cofibration and therefore
has the left lifting property with respect to the fibration ' 5 . As before, this yields a
lift ℎ̃ : !.̃ → - for the right diagram. Therefore !6 has the left lifting property with
respect to all fibrations, since 5 is an arbitrarily chosen fibration of M1. By 3.10 this
means that !6 is a trivial cofibration. Thus ! preserves trivial cofibrations as a direct
result of ' preserving fibrations.

So far we have shown that ! preserves trivial cofibrations precisely if ' preserves
fibrations. We claim that ! preserves cofibrations if and only if ' preserves trivial
fibrations. This can be shown to be true in an identical manner as above, using the same
diagrams as above.

-̃ '- !-̃ -

.̃ '. !.̃ .

6 ' 5 !6 5

However, we now require 5 to be a trivial fibration and 6 a cofibration.
Suppose ! preserves cofibrations. This means that !6 is a cofibration. Since cofibrations

have the left lifting property with respect to trivial fibrations, see 3.10, there exists a
lift ℎ : !.̃ → - such that the right diagram above is commutative. By virtue of the
natural isomorphism homM1 (!.̃ , -) ' homM1 (.̃ , '-), there exists a lift ℎ̃ : .̃ → '-

such that the left diagram above is commutative. Thus, ' 5 has the right lifting property
with respect to 6 and since 6 is an arbitrarily chosen cofibration in M2 we conclude
that ' 5 has the right lifting property with respect to all cofibrations in M2. By 3.10 we
conclude that ' 5 is a trivial fibration. Therefore ! preserving cofibrations implies that
' preserves trivial fibrations.

Conversely, suppose ' preserves trivial fibrations. This implies that ' 5 is a trivial
fibration. Since 6 is a cofibration and cofibrations have the left lifting property with
respect to trivial fibrations, there exists a lift for the left diagram above. Once again,
using the natural isomorphism between hom sets coming from the fact that ! and ' are
adjoint functors, we find a lift for the right diagram. This means that !6 has the left
lifting property with respect to the trivial fibration 5 . Since 5 is an arbitrarily chosen
trivial fibration, we conclude that !6 has the left lifting property with respect to all
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trivial fibrations and by Theorem 3.10 we conclude that !6 is a cofibration. Therefore !
preserves cofibrations.

What we have shown so far is that

� ! preserves trivial cofibrations if and only if ' preserves fibrations,

� ! preserves cofibrations if and only if ' preserves trivial fibrations.

To show that the four conditions in Definition 4.1 are equivalent, we proceed as follows.
Suppose that ! preserves cofibrations and trivial cofibrations. Using the two claims

that we have shown so far, we immediately find that ' preserves fibrations and trivial
fibrations.

Suppose ' preserves cofibrations and trivial fibrations. Using the first of the two
claims we have shown earlier we conclude that ! preserves cofibrations as a result of '
preserving trivial fibrations.

Suppose ! preserves cofibrations and ' preserves fibrations. Using the both claims
that we have shown, we find that ! preserves trivial cofibrations and ' preserves trivial
fibrations.

Suppose ! preserves trivial cofibrations and ' preserves trivial fibrations. Using the
second claim we have proven, we arrive back at the first condition from Definition 4.1,
namely that ! preserves cofibrations and acyclic cofibrations. �

Definition 4.3. Let M1 and M2 be two model categories. Given a left Quillen functor
� :M1 → "2 and a right Quillen functor � :M2 →M1 we define the total left derived
functor !� : Ho(M1) → Ho(M2) as the composition

Ho(M1)
Ho(&)
→ Ho((M1)2)

Ho(�)
→ Ho(M2),

where & is the cofibrant replacement functor of M1, and the total right derived functor
'� : Ho(M2) → Ho(M1) as the composition

Ho(M2)
Ho(')
→ Ho((M2) 5 )

Ho(�)
→ Ho(M1),

where ' is the fibrant replacement functor of M2.

Definition 4.4. Let M1 and M2 be two model categories and let

(�, �) :M1

�−→←−
�

M2

be a Quillen adjunction with � left adjoint and � right adjoint.
The Quillen adjunction (�, �) is a Quillen equivalence if the following equivalent

conditions are satisfied.

� The total left derived functor !� : HoM1 → HoM2 is an equivalence of the
homotopy categories,

� The total right derived functor '� : HoM2 → HoM1 is an equivalence of the
homotopy categories,

� Given a cofibrant object � ∈ M1 and a fibrant object � ∈ M2, a morphism
� → � (�) is a weak equivalence in M1 precisely when the adjunct morphism
� (�) → � is a weak equivalence in M2,
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� The following two conditions hold:

1. The derived adjunction unit is a weak equivalence, in that for every cofibrant ob-

ject � ∈ M1, the composite �
[�→ � (� (�)) → � (� (�) 5 81) (of the component

at � of the adjunction unit [ with a fibrant replacement '(� (�) '→ � (�) 5 81))
is a weak equivalence in M1,

2. The derived adjunction counit is a weak equivalence, in that for every fi-

brant object � ∈ M2, the composite � (� (�)2> 5 ) → � (� (�)) n�→ � (of
the component at � of the adjunction counit n with cofibrant replacement

� (� (�)2> 5 '→ � (�))) is a weak equivalence in M2.

Definition 4.5. Let M1 and M2 be two model categories. We say that M1 and M2

are Quillen equivalent if there exists a zig-zag of Quillen equivalences between them.

Note that not every equivalence between homotopy categories of model categories
lifts to a Quillen equivalence on the level of the model categories. We will present one
example of two model categories that have equivalent homotopy categories but are not
Quillen equivalent.

§4.2 Equivalence of model categories

As promised, we will now discuss how exactly the notion of Quillen equivalence is the
”correct” notion of equivalence for model categories. This part of the thesis is by far
the most informal and this is for a good reason. A rigorous treatment of some of the
concepts we will touch on is not in line with the main intention of this thesis, which is to
provide a gentle introduction to model categories and present an interesting example
of model categories that are not Quillen equivalent and fail to be so in a non-trivial
way. Nonetheless, clarifying the question of finding the right notion of equivalence for
model categories is an important and interesting issue that deserves some attention and
we will make an attempt at pointing towards a handful of useful and detailed works
on ∞-categories, hammock localization and other concepts that will be tangentially
mentioned in this part of the thesis.

If we remind ourselves of the definition of a model category given before, it is hard
not to realize that a categorical equivalence between two model categories is in no way
guaranteed to preserve the model structure of the two model categories. In fact, it
suffices to recall that a category can be endowed with different model structures that have
completely different distinguished classes of weak equivalences, fibrations and cofibrations.

Consider the category of topological spaces. We have briefly touched on two model
structures for Top in 3.29 and 3.30. Finding a weak equivalence in the model structure
that yields the homotopy category of CW-complexes that is not a weak equivalence in
the model structure that yields the homotopy category of topological spaces, that is
to say finding a weak homotopy equivalence in the usual sense that is not a homotopy
equivalence in the usual sense, is far from difficult.

Example 4.6. We consider two topological spaces - = N and . = { 1
=

: = ∈ N} ∪ {0} with
the subspace topology coming from R, endowed with the standard topology. We consider
the map 5 : - → . that maps 0 to 0 and G ∈ - to 1

G
∈ . . This map is continuous:

Let * ≠ ∅ be an open subset of . . Remark that * ≠ {0} since any open subset of R
containing 0 will contain the set { 1

#
, 1
#+1 , . . .} for some # ∈ N large enough. Clearly we

have 5 −1(*) = {= ∈ N : 5 (=) ∈ *} and this is an open subset of -. This follows from
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5 −1(*) = - ∩ ⋃
=∈N
5 (=)∈*

(= − 1
4 , = +

1
4 ) since

⋃
=∈N
5 (=)∈*

(= − 1
4 , = +

1
4 ) is an open subset of R. Thus,

5 is a morphism in the category of topological spaces.
For 5 to be a homotopy equivalence, there must exist some map 6 : . → - such that

5 ◦6 is homotopic to id. and 6 ◦ 5 homotopic to id- . Let � : � ×- → - be the homotopy
from 6 ◦ 5 to id- , with � (0, G) = 6 ◦ 5 (G) and � (1, G) = G. We have � (0, 0) = 6(0) and
� (1, 0) = 0. Since {0} is a path component of - and � (C, 0) defines a path from 0 to
6(0), we conclude that 6(0) = 0.

Thus, if 5 is a homotopy equivalence, then there exists a continuous map 6 : . → -

such that 6(0) = 0. Now, let us suppose that there exists H ∈ . \ {0} such that 6(H) = 0.
If 5 is a homotopy equivalence, then so is 6 and therefore induces a bijection between
the set of path components of . and -. Since 6 sends 0 to 0 and H to 0, this implies
that H and 0 are in the same path component of . , which is not possible, since the path
components of . are all given by singletons. This means that 6−1({0}) = {0}.

By assumption, 6 is continuous and thus 6−1({0}) = {0} is an open subset of . . But
this is clearly not true. Any open set of . is given by the intersection of an open subset
of R with . . Any open set * of R containing 0 must contain (−n, +n) for some n > 0.
But this implies that for # large enough, 1

#
∈ . ∩ (−n, +n) ⊂ . ∩* ≠ {0} and thus, {0}

is not an open set of . .
On the other hand, 5 is trivially a weak homotopy equivalence, which we leave as an

exercise to the reader to verify.

Despite the above example being rather trivial, it neatly illustrates the importance of a
Quillen equivalence when talking about equivalent model categories. In fact, it is thanks
to the notion of Quillen equivalence that we are able to ”categorify” model categories in
the form of the double category of model categories.

Definition 4.7. We define the double category of model categories as consisting of
model categories as objects, left Quillen functors as vertical morphisms, right Quillen
functors as horizontal morphisms and natural transformations between compositions of
functors as 2-morphisms.

Remark. In case the reader is unfamiliar with the notion of double categories, we refer
to the appendix, in particular Definition 6.13.

There are more places where Quillen equivalences show up in a deep and substantial
way. In particular, every Quillen equivalence between two model categories can be turned
into an equivalence of (∞, 1)-categories.

Definition 4.8. An (∞, 1)-category is a simplicial set (•, such that for 0 < 8 < =, every
map of simplicial sets 5 : Λ=

8
→ (• can be extended to a map 5̃ : Δ= → (•, where Δ= is

the standard =-simplex and Λ=
8

is the 8-th horn.

Remark. In case the reader is unfamiliar with simplicial sets, we refer to the appendix,
in particular Definition 6.18.

Suppose we are given a model category M with weak equivalences W. We can
construct an (∞, 1)-category M∞ along with a map M → M∞, characterized by the
universal property that given any ∞-category C there exists a natural fully faithful map
Func(M∞, C) → Func(M, C) for which the essential image comes from functorsM → C
that send weak equivalences to equivalences. A detailed treatment with full proofs can
be found in [12].



39

This construction starts out by considering the so-called hammock localization of the
model category M with respect to W, which yields a simplicial category. For details
on the hammock localization we refer to [10]. Bergner [3] showed that there is a model
category structure for the category of simplicial categories, which is cofibrantly generated.
We consider a fibrant replacement (with respect to the Bergner model structure) of
our simplicial category. By looking at the full simplicial subcategory, which has fibrant
cofibrant objects, we get an ∞-category by taking the homotopy coherent nerve of this
simplicial subcategory. This is the ∞-category underlying the model category M. For
a more in-depth overview of localization of model categories, the reader may want to
consult [12] or [15].
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§5 Model categories that are not Quillen equivalent

We are now turning our attention to two rings. Namely Z/?2 and (Z/?) [n]/(n2). We
are interested in the stable module categories Stmod(Z/?2) and Stmod((Z/?) [n]/(n2)),
which turn out not to be Quillen equivalent. While there are many examples of model
categories that are not Quillen equivalent, there are not many examples that are known
to be not Quillen equivalent in a non-trivial manner, as mentioned in [1].

From here on out, we fix a prime ? and fix two rings ' := Z/?2 and 'n := (Z/?) [n]/(n2).
Additionally, we denote by M the stable module category of ' and by Mn the stable
module category of 'n . These are pointed model categories and we have already introduced
them in 3.41. It is easy to see that the rings ' and 'n are Frobenius rings.

The homotopical equivalence of the model categories M and Mn has been known
for quite some time and is reasonably obvious. Schlichting [18] showed that the model
categories themselves are not Quillen equivalent, using  -theory. Instead of relying on
the computationally heavy machinery from  -theory, we will follow the approach taken
by Dugger & Shipley [7]. In their paper they provide a more elegant argument to show
that M and Mn are not Quillen equivalent. We will first fill in some missing details in
the proof that the homotopy categories associated to our two model categories are indeed
equivalent. Following this, the rest of this thesis focuses on giving an overview of their
approach and present their main results.

As we have previously discussed in Theorem 3.41, there exists a model structure on the
category of '-modules and 'n -modules whose cofibrations are the injections, fibrations
are the surjections and weak equivalences are the so called stable homotopy equivalences.

The two model categories M and Mn are stable model categories, which is to say
that the suspension and loop functor on the associated homotopy categories Ho(M)
and Ho(Mn ) are self-equivalences. Seeing as we have not even mentioned the existence
of these functors on the homotopy category of a model category, we will provide an
overview of where these suspension functors come from in the general case of pointed
model categories.

To construct the suspension functors for the homotopy category of any pointed model
category M, the fact that the homotopy category of a pointed model category can
be given a closed Ho(SSet∗)-module structure, where SSet∗ is the category of pointed
simplicial sets, is of crucial importance. It allows defining suspension functors for Ho(M)
as a closed action of Ho(SSet∗) on Ho(M).

Since we chose not to give a detailed presentation of the theory of simplicial sets, apart
from providing the most basic definitions in the appendix, and due to the technical nature
of establishing that Ho(M) can indeed be given the structure of a Ho(SSet∗)-module,
we will not show the construction of the loop and suspension functors for the homotopy
category of any pointed model category. The existence of suspension functors for the
homotopy category of any pointed model category is however of little concern to us. The
two model categories that are of interest to us, allow for an explicit construction of the
suspension and loop functor without appealing to the general existence result.

For an extensive treatment of the Ho(SSet∗)-module structure of Ho(M) for any
pointed model category M and the existence of suspension functors for Ho(M) the
reader may want to consult [13], Chapter 5 & 6.

§5.1 Homotopy category equivalence

Before discussing howM andMn are not Quillen equivalent we will show that Ho(M) and
Ho(Mn ) are equivalent. Of course if those two homotopy categories weren’t equivalent,
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by definition 4.4 they wouldn’t be Quillen equivalent and the example would not be of
much interest.

Suppose " is a module over Z/?2. Let Γ" denote (Ann" ?)/?", where Ann" ? are
all the elements of " that are annihilated by multiplication by ?. Γ" is naturally a Z/?-
vector space, since any element of Ann" ? is of order ? in " and by taking the quotient
of this annihilator with ?" we make sure that for G, H ∈ Z/?2 such that i(G) = i(H),
where i : Z/?2 → Z/? is the operation mod ?, it holds that for any < ∈ Ann" ? we
have G< − H< = (G − H)< = (: ?)< ∈ ?" and thus i(G)< = i(H)< in Γ" and thus the
scalar multiplication · : Z/? × " → " induced by · : Z/?2 × " → " is well defined.

For any ", let �∗(") denote the chain complex graded over Z that has " in every
dimension and the differentials are given by multiplication by ?. This means that Γ" is
the homology of �∗(") in dimension 0.

Since �∗(") consists of " in every dimension, looking at the homology at any dimension
looks as follows:

. . .→ ker("
·?
→ ")/(im("

·?
→ ")) → . . . .

Since ker("
·?
→ ") = {G ∈ " : ?G = 0} and im("

·?
→ ") = ?", we have indeed that

the homology is equal to Γ".

Lemma 5.1. Let " be a module over Z/?2. " is isomorphic to Γ" ⊕ �, where � is a
free module.

Proof. Let {E8} be a Z/? basis for ?", which is justified by virtue of ?" being a Z/?-
module.For any 8 there exists some F8 ∈ " for which ?F8 = E8. Let � be generated by

all F8, which form a free basis for �. This is true because suppose that
=∑
8=0
A8F8 = 0, then

this implies that
=∑
8=0
?A8F8 =

=∑
8=0
A8E8 = 0, which implies that A8 = 0 for all 8, since E8 form a

Z/? basis for ?".
The canonical inclusion Ann" ? → " induces the map Γ" → "/�. We want to show

that this is an isomorphism. Consider the short exact sequence of chain complexes

0→ �∗(�) → �∗(") → �∗("/�) → 0,

where �∗(�) is exact since � is free. Using the zig-zag lemma we find that Γ" = Γ("/�).
But Γ("/�) = "/� since multiplying by ? restricts to the zero map for "/�.
"/� is a Z/?-vector space, which means we can choose a basis {0 9 }. For all 9 there

exists some 1 9 ∈ " such that c(1 9 ) = 0 9 and for which we have ?1 9 = 0, where c is the
quotient map " → "/�. From here we have a splitting for the short exact sequence
0→ � → " → "/� → 0 by mapping 0 9 to 1 9 . If we can show that the map 0 9 ↦→ 1 9 is
a Z/?2-module homomorphism we are done, since it is obvious that c◦ (0 9 ↦→ 1 9 ) = id"/�
and therefore we have " ' � ⊕ "/�.

Since i : Z/?2 → Z/? with i(G) = G mod ? is a ring homomorphism, any Z/?-module
structure can be pulled back to a Z/?2-module structure. Thus both "/� and ?",
which are Z/?-modules are naturally Z/?2-modules.

This means that any Z/?-module morphism 5 : "/� → ?" can be given the structure
of a Z/?2-module morphism 5̃ : "/� → ?", where 5̃ (A ·G) := 5 (i(A) ·G) for any A ∈ Z/?2
and G ∈ "/�.

It is obvious that extending the map 0 9 ↦→ 1 9 by linearity to a map 5 : "/� → "

doesn’t change the fact that ? 5 (G) = 0, since any G ∈ "/� is of the form
=∑
8=0
A808 and
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thus ? 5 (G) = ?
=∑
8=0
A8?1 9 (8) = 0 and therefore 5 is in fact a map from "/� → ?", since

?" contains all elements of order ? of ". �

Our next short term aim is to show that VectZ/? (+,,) → Ho(M)(+,,) is an isomor-
phism for any two vector spaces + and , over Z/?. Before we show this we need to
establish some basic facts about the model category we are working with.

Lemma 5.2. Let " be an '-module. Then there exists a very good path object for ".

Proof. Let " be an '-module and let �
5
→ " be any surjection from a free module �

onto ". Let %" denote the direct sum " ⊕ �. We have a natural inclusion 8 : " → %".
Let c : %" → " ⊕ " be the map given by c(<, 5 ) = ∇" (<) + 8 5 , where ∇" is the

diagonal on ".
This means that c8 = ∇" and therefore c8 is a factorization of the diagonal ∇" .
Additionally " → %" is a trivial cofibration, since cofibrations are exactly injective

maps and triviality follows from the fact that the inclusion " → " ⊕ % is a stable
equivalence for any projective module % and since � is a free module it is projective,
meaning that " → " ⊕ � is a stable equivalence.

Finally, %" → " ⊕ " is a fibration since it is surjective. In fact, suppose we choose
any (<1, <2) ∈ " ⊕ ". Since <2 − <1 ∈ " and � → " is surjective, there exists < ∈ �
such that 5 (<) = <2 − <1. It is easy to see that c(<1, <) = (<1, <1) + (0, 5 (<)) =
(<1, <1 + <2 − <1) = (<1, <2) and thus %" → " ⊕ " is surjective, which means that
by virtue of fibrations being exactly surjective maps this is in fact a fibration.

Thus, %" is a very good path object for ". �

In the following result, the notion of a coequalizer of two maps appears. The notation
will be explained and introduced step by step in the proof of the lemma.

Lemma 5.3. Let ", %" and � be as above along with the maps that we just introduced.
Then for any '-module �

coeq(M(�, %") →→M(�, ")) → Ho(M)(�, ")

is an isomorphism.

Proof. First we comment on the notion of a coequalizer. Given two parallel morphisms
between two objects 5 , 6 : - → . , the coequalizer is an object & together with a
morphism @ : . → & such that @ ◦ 5 = @ ◦ 6 and such that the pair &, @ is universal in
the sense that given any other pair (&′, @′) there exists a unique morphism ℎ : & → &′

such that D ◦ @ = @′. This is represented in the following diagram:

- . &

&′

5

6

@

D
@′

This means that in our case, we are interested in an object & and a morphism
@ : HomM (�, ") → & such that @ ◦ ?0 = @ ◦ ?1 and such that (&, @) is universal as
defined above.



43

Since M is the category of '-modules and ' is commutative, HomM (-,. ) is an
'-module for any '-modules - and . . Thus, the coequalizer of two parallel '-module
homomorphisms 5 , 6 is given by the cokernel of 5 − 6.

We recall that for the cofibrantly generated model structure on the category of '-
modules, two maps are stably equivalent if and only if they are left or right homotopic.
This means that their difference factors through a projective module if and only if there
exists a left or right homotopy. Since all objects in this model category are both fibrant
and cofibrant, by 3.23 the existence of a left homotopy is equivalent to the existence of a
right homotopy.

For any '-module �, the two parallel morphisms HomM (�, %") → HomM (�, ")
are given by ?̃0 and ?̃1, where ?̃0 is left composition with ?0 : %" → ", defined by
?0(<, 5 ) = < and ?̃1 is left composition with ?1 : %" → ", defined by ?1(<, 5 ) = U( 5 ),
where U : � → " is the surjection from � to ".

Thus, for any map 5 ∈ HomM (�, %") we can construct two maps ?̃0( 5 ) and ?̃1( 5 )
which are in HomM (�, ").

The coequalizer of ?̃0 and ?̃1 is given by the cokernel of ?̃0 − ?̃1, which is the quotient
module HomM (�, ")/Im( ?̃0 − ?̃1).

Suppose now that we have two morphisms 5 , 6 ∈ Hom" (�, "), such that 5 − 6 ∈
Im( ?̃0 − ?̃1), i.e. 5 and 6 are two representatives of the same equivalence class of
coker( ?̃0− ?̃1). This implies that there exists a map ℎ : � → %" such that ( ?̃0− ?̃1) (ℎ) =
5 − 6 and thus 5 − 6 factors through the projective %". This implies that 5 and 6 are
stably equivalent and thus by Theorem 3.41 there exists a homotopy between 5 and 6
and thus, 5 and 6 are mapped to the same equivalence class in HomHo(M) (�, ").

Likewise, suppose we have two representatives 5 , 6 : � → " of the same equivalence
class of HomHo(M) (�, "). This implies that there exists a homotopy between 5 and 6.
By Lemma 3.21 we can pick any good path object to exhibit the homotopy between 5

and 6, therefore we can choose %" as our good path object.
We have a homotopy [ : 5 ⇒ 6 such that the following diagram is commutative.

�

" %" "
?̃0 ?̃1

5 6

Therefore, we conclude that 5 − 6 = ?̃0([) − ?̃1([) and thus 5 − 6 ∈ Im( ?̃0 − ?̃1) and
thus 5 and 6 belong to the same class of coker( ?̃0 − ?̃1).

Thus, both directions of the map coker( ?̃0 − ?̃1) → HomHo(M) (�, ") are well-defined.
The fact that this map is a bijection follows immediately from the fact that any map

HomHo(M) (�, ") factors through %" and thus must be in the cokernel of ?̃0 − ?̃1. �

Theorem 5.4. Let + and , be two vector spaces over Z/?. Then Vect(+,,) →
Ho(M)(+,,) is an isomorphism.

Proof. We claim that the two parallel morphisms M(+, %,) →→M(+,,) are the same.

This is indeed true, since the only way for a morphism between two vector spaces + → ,

over Z/? to factor through a free module over Z/?2 is the zero map, which means
that the two parallel morphisms are the same and more precisely they are given by
%, := , ⊕ � 3 (F, 5 ) ↦→ F ∈ , .

We will justify why a linear map between Z/?-vector spaces that factors through a
free module over Z/?2 must be the zero map. Let 5 : + → , be a linear map with +
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and , Z/?-vector spaces, with 5 = 6 ◦ ℎ factoring through some free Z/?2-module ",
where 6 : " → , and ℎ : + → ".

From here on, we regard + , , and " as Z/?2-modules and the linear map is trivially
a Z/?2-module homomorphism. The Z/?2-module structure comes from the fact that we
have a ring homomorphism i : Z/?2 → Z/?, given by modulus ?, and Z/?2 acts on +
and , as follows: For any A ∈ Z/?2 and G an element of + or , , we take A · G = i(A) · G,
where the right-hand side is given by the Z/?-vector space structure of + or , .

Suppose that there exists G ∈ + such that 5 (G) ≠ 0. Since ?G = 0, we know that
?6(G) = 0, which implies that ℎ(G) is of order ? in ". Since " is a free module, there
exists a basis for ". Thus we know that there exists some H ∈ " such that ?H = ℎ(G).
Therefore we have 0 ≠ 5 (G) = 6ℎ(G) = 6(?H) = ?6(H) = 0, since any non-zero element of
, is of order ?. Thus, 5 has to be the zero map.

Therefore, coeq(M(+, %,) →→ M(+,,)) = VectZ/? (+,,) and thus by the previous
proposition we have VectZ/? (+,,) ' Ho(M)(+,,). �

We have shown that we have VectZ/? (+,,) = Ho(M)(+,,). If we show that
VectZ/? (+,,) = Ho(Mn ) (+,,) then we have effectively shown that Ho(M) ' Ho(Mn ).
An observant reader may point out that we have focused all of our efforts on how
morphisms are mapped between VectZ/? and Ho(M)(+,,). This is of little importance,
since the appropriate map of objects has already been introduced earlier, specifically the
map Γ that assigns to each module " the module Γ".

Proving that Vect(+,,) = Ho(Mn ) (+,,) is easier than doing so forM. Every module
over 'n is naturally a Z/?-vector space, which simplifies the arguments significantly.
Instead of defining Γ" as (Ann" ?)/?", we define Γ" as (Ann"n)/n" and the rest
follows from the exact same reasoning as above for the ring '.

Therefore we have

Theorem 5.5. Ho(M) ' Ho(Mn ).

§5.2 Not Quillen-equivalent

Having shown that the two model categories M and Mn have equivalent homotopy
categories, we will now give an overview of why the model categories themselves are not
Quillen equivalent. This requires a lot of machinery, much of which Brooke & Shipley do
not cover in their paper and much of which has been introduced by earlier papers by the
same authors. We will refer to these earlier papers whenever convenient and helpful to
the reader.

The approach that Brooke & Shipley take to show that the model categories M and
Mn are not Quillen equivalent consists of multiple steps. We will present each step as its
own subsection.

From here on out, ) denotes a generic Frobenius ring and we denote by [", #] the
stable homotopy classes of maps, i.e. [", #] = HomStmod(T) (", #)/∼, where 5 ∼ 6 if
and only if there exists a left or right homotopy between the two, or equivalently if 5 − 6
factors through a projective, that is to say that 5 and 6 are stably equivalent.

5.2.1 Quillen equivalence with model category of dg-modules

The first step consists of showing that the model category of stable modules over a
Frobenius ring that comes with a compact weak generator is Quillen equivalent to a
certain model category of dg-modules over a dga.

Before we show this result, we require a few more definitions.
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Definition 5.6. Let " be a module in Stmod()). We say that " is compact if the map⊕
8∈�
[", #8] → [",

⊕
8∈�
#8] is an isomorphism for any collection of objects {#8}8∈� .

Definition 5.7. Let " be a )-module. We denote by � (") the object coming from
the functorial factorization of " → ∗ into " → � (") → 0, where the first map is a
cofibration and the second map is a trivial fibration.

Analogously, we denote by %(") the object coming from the functorial factorization of
∗ → " into ∗ → %(") → ", where the first map is a trivial cofibration and the second
a fibration.

We define Σ" := coker(" → � (")) and Ω" := ker(%(") → ").

Remark. An observant reader may notice that in the definition above, we are essentially
repeating the argument that we used to show the existence of cofibrant and fibrant
replacements in the proof of Proposition 3.9. The reason for not referring to � (") as
the cofibrant replacement and %(") as the fibrant replacement has to do with how the
cofibrant and fibrant replacements are defined. In the statement of Proposition 3.9 we
consider some object - of a model category M and introduce a fibrant object '- along
with a cofibrant object &-, both of which are weakly equivalent to -. In the proof of the
proposition we use the two functorial factorizations of the model category M to produce
two maps ∅ → &- → - and - → '- → ∗, with the first map given as a composition of
a cofibration followed by a trivial fibration and the second as a composition of a trivial
cofibration followed by a fibration.

We chose not to require the weak equivalence &- → - to be a fibration and the weak
equivalence - → '- to be a cofibration in our definition of the cofibrant and fibrant
replacement to stick to the standard treatment of the fibrant and cofibrant replacement
in most literature and references on model categories.

Therefore, to avoid any potential confusion, in the definition above we decided to
appeal to the functorial factorization instead of the fibrant and cofibrant replacements.
This guarantees a lack of doubts over why the weak equivalences between � ("), " and
%(") are in fact trivial (co)fibrations and not merely weak equivalences.

Remark. At this point, we deem it sensible to point out that in the definition above, Ω
and Σ are the loop and suspension functors of the homotopy category of the model category
Stmod()). Earlier, we briefly touched on the existence of these functors for any pointed
model category as a result of homotopy categories of pointed model categories having a
Ho(SSet∗)-module structure and remarked that the context of the model categories M
andMn allows identifying these functors explicitly, by which we mean precisely Ω and Σ
as given in the definition above.

Definition 5.8. Let " and # be )-modules. The graded stable classes of maps in
Ho(Stmod())) is denoted by [", #]∗, where [", #]= := [Σ=", #] ' [",Ω=#].

Remark. The definition above is proper, that is to say we have [Σ=", #] ' [",Ω=#].
This is exactly what it means for the model category Stmod()) to be a stable model
category.

Definition 5.9. Let " and # be two ) -modules. We say that " is a weak generator of
Stmod()) if [", #]∗ = 0 implies that # is weakly equivalent to ∗ for any )-module #.

Lemma 5.10. Let " be a ) -module. If " is stably equivalent to some finitely generated
module "̃, then " is automatically compact in Stmod()).
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Before we provide a proof for Lemma 5.10 we present some results that will be needed.
We first recall some basic definitions and then give some properties for finitely generated
and finitely presented modules.

Definition 5.11. Let ) be a ring and " an )-module. " is said to be finitely generated
or simply finite if there exists a finite subset {<1, . . . , <=} ⊂ " such that every element
< ∈ " is an ) -linear combination of elements <8. This is equivalent to the existence of a
surjective )-module homomorphism )= → " for some = ∈ N.

Similarly, " is said to be finitely presented if there exists an exact sequence )< →
)= → " → 0 for some =, < ∈ N.

Lemma 5.12. Let ) be a ring and " a finitely generated projective )-module. Then
" is finitely presented.

Proof. Since " is finitely generated, there exists a surjection )= → ". Since " is
projective, the short exact sequence 0 → ker()= → ") → )= → " → 0 splits and
therefore, ker()= → ") ⊕ " ' )=. Therefore ker()= → ") is a direct summand of )=

and must therefore by finitely generated. This implies that our short exact sequence
0→ ker()= → ") → )= → " → 0 exhibits " as a finitely presented )-module. �

Proposition 5.13. Let ) be a Frobenius ring. Then any finitely generated )-module is
finitely presented.

Proof. Since ) is a Frobenius ring, every projective module is an injective module. Thus,
any direct sum of injective modules is a direct sum of projective modules, and thus itself
a projective module and thus an injective module. This implies that ) is Noetherian,
therefore )= is Noetherian, thus ker()= → ") is finitely generated since it is a )-
submodule of the Noetherian module )=. Since ker()= → ") is finitely generated, there
exists a surjection )< → ker()= → ") for some < ∈ N and thus )< → )= → " → 0 is
an exact sequence. This exact sequence exhibits " as a finitely presented )-module. �

Lemma 5.14. Let ) be a ring. Suppose - is a finitely presented )-module. Then the
canonical map lim

→8
Hom) (-, "8) → Hom) (-, lim→8 "8) is bijective for any filtered colimit

lim
→8

"8.

Proof. Suppose - is finitely presented. Then there exists an exact sequence )< → )= →
- → 0. It is obvious that this means that - is finitely generated, since ker(- → 0) = -
and thus im()= → -) = - is an epimorphism. We show that for a finitely presented
module -, the map lim

→8
Hom) (-, "8) → Hom) (-, lim→8 "8) is injective.

Let us first choose generators G1, . . . , G: ∈ - for -. Suppose that we have some map
5 : # → "8, for some 8 that is sent to the zero map - → "8 → " := lim

→8
"8 by the map

lim
→8

Hom) (-, "8) → Hom) (-, lim→8 "8). Then for any 9 ∈ {1, . . . , :}, there exists some

; ≥ 8 such that the map - → " 9 sends G 9 to zero. Since the number of G 9 ’s is finite, we
can find some ; ≥ 8 such that the map - → "; is the zero map. Therefore - → "8 → ";

is the zero map and thus, the map 5 is the zero map when considered as an element of
lim
→8

Hom) (-, "8).
Let " := lim

→8
"8 for some filtered colimit. Since - is finitely presented, we have an

exact sequence )< → )= → - → 0. Thus by exactness of the functor Hom) (−, #) for
any ) -module # , we have an exact sequence 0→ Hom) (-, ") → Hom) ()=, ") = "= →
Hom) ()<, ") = "< and another exact sequence 0→ Hom) (-, "8) → Hom) ()=, "8) =
"=
8
→ Hom) ()<, "8) = "<

8
. Taking the colimit of the second of these two exact
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sequences yields another exact sequence 0→ Hom) (-, "8) → "= → "<. By padding
the two sequences with an additional 0 on the left, we get two exact sequences 0→ 0→
lim
→8

Hom) (-, "8) → "= → "< and 0 → 0 → Hom) (-, ") → "= → "<. Using the

5-lemma for both sequences shows that lim
→8

Hom) (-, "8) ' Hom) (-, lim→8 "8). �

Proof. (of Lemma 5.10) We have already discussed how stable equivalences between
modules turn into isomorphisms once we pass to the homotopy category. Let " and
"̃ be stable equivalent, or equivalently weakly equivalent. That means there exists a
weak equivalence 5 : " → "̃. Therefore 5 is an isomorphism in the homotopy category.
Therefore it suffices to show that finitely generated modules are compact in Stmod()). By
Lemma 5.14, finitely presented modules are compact and by Proposition 5.13 any finitely
generated module over a Frobenius ring is finitely presented. Thus we are done. �

At this point we can refer to a number of papers that show that any additive, stable,
combinatorial model category that has a compact weak generator is Quillen equivalent
to the model category of modules over a certain dga. If this is of interest to the reader,
we suggest consulting [6], [8], [20] or [21].

However, invoking such heavy machinery is somewhat unnecessary in this case. As
Dugger & Shipley point out, the particular model categories M and Mn that we are
interested in allow us to explicitly construct a Quillen equivalence between M and
the model category of modules over a particular dga and a second Quillen equivalence
between Mn and a model category of modules over a different particular dga.

Our main goal here is to move from working with modules over a Frobenius ring to
differential graded modules. To this end, we want to construct a complete resolution
of a module ", that is to say an acyclic Z-graded chain complex of projective modules
(which are automatically injective by virtue of working with Frobenius rings) such that
there is an isomorphism between the module and the cycles in degree −1 of the complete
resolution.

Suppose that we have a %•" is such a complete resolution of ". " and Ω" can
be considered as complexes concentrated in degree zero, which we do by taking "

(respectively Ω") in degree 0 and 0 everywhere else, with differentials being given by
the 0 map. Since %•" is a complete resolution of ", we have a natural isomorphism
/−1(%•") → ", where /−1(%•") are the cycles in degree −1 of %•". Therefore we
have a canonical map c : %•" → " given by the composition of %0" → /−1(%•")
and /−1(%•") → ", where the first map is a projection and the second map is an
isomorphism. This allows us to lift the map %(") → " to the map %(") → %0".
Since we defined Ω" as the kernel of %(") → ", this lifting is actually a map of
complexes 8 : Ω" → %•". This lifting may not be canonical, but it is always so up to
chain homotopy, which is enough in our case. Therefore, we can always go from Ω" to
" via a complete resolution %•" of " and this map is canonical up to chain homotopy.

We now construct one complete resolution %•" of ". We define %=" := � (Σ−(=+1))
for = < 0 and %=" := %(Ω=") for = ≥ 0, with differentials %: → %:−1 defined by the
composition %(Ω:") → Ω:" → %(Ω:−1") for : − 1 > 0, the composition %(Ω") →
Ω" → %(") for %1" → %0", the composition %(") → " → � (") for %0" → %−1"
and the composition � (Σ−(:+1)) → Σ−:" → � (Σ−:") for %: → %:−1 for : < 0. This is
summarized in the following diagram:

. . . %(Ω") %(") � (") � (Σ") . . .

Ω2" Ω" " Σ" Σ2"
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This gives us a complete resolution %•".

Definition 5.15. Let Ch) be the category of Z-graded chain complexes of )-modules,
(-•, 3-), (.•, 3. ) two graded chain complexes of Ch) and let Hom(-•, .•) be the complex
with Hom(-•, .•)= :=

∏
:

HomMod()) (-: , .=+: ) the degree = )-module morphisms, without

taking into consideration the differentials of the two chain complexes. Given ( 5: ) ∈
Hom(-•, .•)=, we define 35 ∈ Hom(-•, .•)=−1 as

∏
:

3. 5: + (−1)=+1 5:−13- .

It is clear that Hom(-•, -•) is a differential graded algebra over ) .

Remark. For a general reference on differential graded algebras and differential graded
modules over dgas, we refer to [4].

Definition 5.16. We define the endomorphism dga of " as E" = Hom(%•", %•").

There is a model category Mod − E" that is the category of right differential graded
modules over the dga E" with weak equivalences given by quasi-isomorphisms and
fibrations by surjections. While we will not explicitly present this model structure,
it seems worthwhile pointing out that this model structure is very comparable to the
model category Stmod()). For a full reference we recommend [2], wherein various model
structures for differential graded modules over differential graded algebras are considered.

Lemma 5.17 ([7], Lemma 3.6). Let " and # be two )-modules and %•" a complete
resolution of ". Then

� there are isomorphisms �: Hom(%•", #) ' [", #]: for all : ∈ Z and these
isomorphisms are natural in #,

� there are isomorphisms �: Hom(#, %•") ' [#,Ω"]: for all : ∈ Z and these
isomorphisms are natural in #,

� the map c∗ : Hom(%•", %•") → Hom(%•", "), which is induced by the map of
complexes c : %•" → ", is a quasi-isomorphism,

� the map 8∗ : Hom(%•", %•") → Hom(Ω", %•"), which is induced by the map of
complexes 8 : Ω" → %•", is a quasi-isomorphism.

Theorem 5.18 ([7], Theorem 3.5). Let " be a compact weak generator of Stmod()).
Then there exists a Quillen equivalence between Mod − E" and Stmod()), with right
adjoint given by Hom(%•", ·) : Stmod()) → Mod − E" .

The Quillen equivalence in 5.18 can be explicitly split into the following two Quillen
equivalences

Mod − E"
−⊗E" %•"−→←−

Hom(%•",−)
Ch)

20−→←−
80

Stmod()),

where 80 sends modules # to the chain complex with # concentrated in degree 0 and 20
sends a chain complex % to %0/im(%1).
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5.2.2 Existence of compact generators

The second step is showing that the two stable module categories M and Mn have
compact generators. Additionally the actual model category of dg-modules over some
dga is made more precise by giving the actual dga for which the Quillen equivalence
holds for both M and Mn .

Now we turn our attention back to ' := Z/?2 and 'n := ((Z/?) [n])/(n2). Before we
work with those two rings, we need an additional definition.

Definition 5.19. Let C be an abelian category and D a full subcategory of C. We say
that D is a localizing subcategory of C if there exists an exact functor � : C → C̃ with a
right adjoint � : C̃ → C that is fully faithful and such that D is given by the kernel of
the functor �, that is to say that objects of D are exactly objects - of C for which we
have � (-) = 0.

Proposition 5.20. Z/? is a compact generator for Stmod(') and Stmod('n ).

Proof. By virtue of being finitely generated, Lemma 5.10 guarantees that Z/? is compact.
To show that it is a generator, we make use of a particular characterization of compact

generators. For Z/? to be a compact generator is equivalent to every localizing subcategory
that contains Z/? being the full category. This characterization of compact generators
can be found in [20], Lemma 2.2.1.

Suppose we are working with a localizing subcategory of Ho(Stmod(')) that contains
Z/?. Since this implies that there exists an exact functor � that exhibits the localizing
subcategory as its kernel, the exact sequence 0 → Z/? → ' → Z/? → 0 is sent to
0 → 0 → � (') → 0 → 0. By exactness of the functor this new sequence is exact as
well, which implies that � (') = 0 and thus ' is in the kernel of � and therefore in the
localizing subcategory.

Therefore all free modules are contained in the localizing subcategory and so are all
Z/?-vector spaces. By Lemma 5.1 any module over ' is isomorphic to a direct sum of a
Z/?-vector space and a free module. This means that all modules are contained in the
localizing subcategory and therefore Z/? is indeed a compact generator for Stmod(').

The same argument holds for 'n . �

As mentioned earlier, it is unnecessary to appeal to results from [6], [8], [20], [21], since
we can directly identify the endomorphism dga associated to the generator Z/?. This is
exactly the direction Dugger & Shipley take in [7].

Proposition 5.21 ([7], Proposition 4.2). The dga EZ/? in Stmod(') is quasi-isomorphic
to the dga � generated over Z by 4 and G in degree 1 and H in degree −1 under the
relations 42 = 0, 4G + G4 = G2, GH = HG = 1 and differential 34 = ?, 3G = 0 and 3H = 0, that
is to say that

� = Z〈4, G, H〉/(42 = 0, 4G + G4 = G2, GH = HG = 1, 34 = ?, 3G = 0, 3H = 0),

with |4 | = |G | = 1 and |H | = −1.

As for ', we can explicitly identify the endomorphism dga associated to the generator
Z/? in Stmod('n ).

Proposition 5.22 ([7], Proposition 4.3). The dga EZ/? in Stmod('n ) is quasi-isomorphic
to the formal dga �n = Z/? [G, H] (GH − 1) with trivial differential, |G | = 1 and |H | = −1.
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Proposition 5.21 follows almost directly from computations of End(Z/?2)=, which is
defined to be Hom(Z/?2,Z/?2)=, where Z/?2 is considered as a chain complex consisting
of Z/?2 in every dimension and the differential is given by multiplication by ?. The
reason that we can identify EZ/? up to quasi-isomorphism by computing End(Z/?2)= is
because Z/?2 is a complete resolution of Z/? and thus, by earlier remarks, we know that
the dga EZ/? is quasi-isomorphic to End(Z/?2).

Likewise, if we consider ((Z/?) [n])/(n2) as a chain complex with ((Z/?) [n])/(n2) in
every dimension and the differentials being given by multiplication by n , we have a
complete resolution of Z/? and thus a quasi-isomorphism between End(((Z/?) [n])/(n2))
and EZ/?. As was the case for Z/?2, computations of End(((Z/?) [n])/(n2))= allow us to
identify EZ/? up to quasi-isomorphism.

5.2.3 Necessary conditions for a Quillen equivalence

The third step consists of showing that there exists a necessary condition forM andMn

to be Quillen equivalent. In particular, it is shown that Mod − � and Mod − �n , which
are the model categories of dg-modules over dgas that are Quillen equivalent to M and
Mn respectively have to be Quillen equivalent for M and Mn to be Quillen equivalent.

Having established that a Quillen equivalence between M and Mn requires a Quillen
equivalence between Mod−� and Mod−�n reduces the problem to showing that Mod−�
and Mod − �n are not Quillen equivalent.

In order to show a lack of such a Quillen equivalence, further simplifications can be
made by showing that if there were a chain of Quillen equivalences then � would have
to be taken to �n in the derived equivalence of homotopy categories associated to the
model categories.

Showing that there does not exist any Quillen equivalence that takes � to �n in
the equivalence of homotopy categories is rather difficult without the help of additional
machinery. To this end it can be shown that Mod−� and Mod−�n are stable combinatorial
model categories, which implies the existence of an associated homotopy endomorphism
ring spectrum by [6]. By the necessary condition that the dga � has to be taken to �n in
the derived equivalence of homotopy categories and [6], Corollary 1.4, it follows that for
there to be a chain of Quillen equivalences between Mod − � and Mod − �n there must
be an isomorphism hEnd(�) ' hEnd(�n ) between the two homotopy endomorphism ring
spectra associated to � and �n .

Schwede & Shipley showed that two quasi-isomorphic dgas have Quillen equivalent
model categories, see [19] Theorem 4.3. Using their result and Theorem 5.18 we establish
a Quillen equivalence between Stmod(') and Mod − � and another Quillen equivalence
between Stmod('n ) and Mod − �n .

Proposition 5.23. Suppose there exists a zig-zag of Quillen equivalences between
Stmod(') and Stmod('n ). Then the derived equivalence of homotopy categories between
the two homotopy categories of the two model categories maps the module Z/? ∈ Ho(M)
to an object of Ho(Mn ) that is isomorphic to the module Z/? ∈ Ho(Mn )

Proof. We have seen before that the homotopy category of the two model categories
Stmod(') and Stmod('n ) are isomorphic to the category of Z/?-vector spaces.

We show that Z/? is mapped to an object isomorphic to Z/? by looking at the set
of endomorphisms of Z/?. Let 5 : Z/? → Z/? be a Z/?-module endomorphism of Z/?.
For any G ∈ Z/? we have 5 (G) = 5 (G · 1) = G 5 (1) and thus every such endomorphism is
nothing more than multiplication by 5 (1). Therefore there are ? distinct Z/?-module
endomorphisms of Z/?.
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For any free module " = (Z/?)= of rank = we have a natural identification of the
endomorphism algebra of " with =-by-= matrices with entries in Z/?.

If " is an infinite dimensional vector space over Z/?, we choose a basis. Any function
from this basis to " is an endomorphism, thus the number of endomorphisms cannot
be finite. Thus an infinite dimensional vector space " over Z/? cannot have a finite
number of endomorphisms.

Therefore, the only vector space over Z/? with exactly ? endomorphisms is a free
module that is isomorphic to Z/?. �

We know that the left adjoint in the Quillen equivalence Mod − EZ/? −→←− Stmod(')
sends EZ/? to Z/? and likewise for 'n .

Thus, by the proposition just above, by virtue of EZ/? in Stmod(') being quasi-
isomorphic to � and EZ/? being quasi-isomorphic to �n in Stmod('n ), we know that
a potential zig-zag of Quillen equivalences between Stmod(') and Stmod('n ) contains
a map that under the derived equivalence of homotopy categories will take � to �n ,
since otherwise Z/? would not be taken to an object isomorphic to Z/? in the homotopy
category associated to the model categories.

5.2.4 Topological non-equivalence of dgas

As discussed in the previous step, a Quillen equivalence between Mod − � and Mod − �n
must take � to �n in the derived equivalence of homotopy categories and additionally, we
would have an isomorphism of ring spectra hEnd(�) ' hEnd(�n ). To finish our initial
goal of showing that M and Mn are not Quillen equivalent, we only require one last
proposition.

Proposition 5.24 ([7], Proposition 4.7). � and �n are not topologically equivalent.

Since the model categories Mod− � and Mod− �n are Ch(Z)-model categories, which is
to say that they are Ch(Z)-enriched, tensored and cotensored, where the tensoring is given
by tensor product coming from the enrichment and the cotensoring by the internal hom,
and therefore additive model categories in the language of [8]. By [8], Proposition 1.5
and Proposition 1.7, there exists a weak equivalence from the homotopy endomorphism
ring spectra hEnd(�) and hEnd(�n ) to their respective Eilenberg-MacLane ring spectra.
Since the endomorphism dgas of � and �n are given by � and �n themselves, a Quillen
equivalence of Mod − � and Mod − �n would induce a weak equivalence between the
Eilenberg-MacLane ring spectra of � and �n . This is the meaning that Dugger & Shipley
give to the notion of topological equivalence of dgas. Two dgas are topologically equivalent
if their corresponding Eilenberg-MacLane ring spectra are isomorphic. The question
of topological equivalence of dgas is given a detailed treatment in [9]. One interesting
result is that two non-quasi-isomorphic dgas can give rise to topologically equivalent dgas.
On the other hand, quasi-isomorphic dgas always give rise to topologically equivalent
Eilenberg-MacLane ring spectra. Thus, as alluded to earlier, Proposition 5.24 is the last
piece that completes the proof that M and Mn are not Quillen equivalent.
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§6 Appendix

§6.1 Category theory

Definition 6.1. A monoidal category is a category C along with

1. a functor ⊗ : C × C → C, called the tensor product,

2. an object 1 ∈ C, called the unit object or tensor unit,

3. a natural isomorphism 0 : ((−) ⊗ (−)) ⊗ (−) → (−) ⊗ ((−) ⊗ (−)), with components
0-./ : (- ⊗ . ) ⊗ / → - ⊗ (. ⊗ /), called the associator,

4. a natural isomorphism _ : (1 ⊗ (−)) → (−), with components of the form _- :
1 ⊗ - → -, called the left unitor,

5. a natural isomorphism d : (−) ⊗1→ (−), with components of the form d- : - ⊗1→
-, called the right unitor,

such that the following conditions are satisfied:

1. the so-called triangle identity holds, that is to say that the following diagram is
commutative for any choice of objects - and . :

(- ⊗ 1) ⊗ . - ⊗ (1 ⊗ . )

- ⊗ .
d-⊗1. 1-⊗_.

0-1.

2. the so-called pentagon identity holds, that is to say that the following diagram is
commutative for any choice of objects -,., /,, :

((- ⊗ . ) ⊗ /) ⊗,

(- ⊗ (. ⊗ /)) ⊗, (- ⊗ . ) ⊗ (/ ⊗,)

- ⊗ ((. ⊗ /) ⊗,) - ⊗ (. ⊗ (/ ⊗,))

0-. /⊗id,

0- (. ⊗/ ),

id-⊗0. /,

0 (- ⊗. )/,

0-. (/ ⊗, )

Definition 6.2. Let C be a monoidal category, with tensor product ⊗, tensor unit 1,
associator 0, left unitor _ and right unitor d. A small C-category, or C-enriched category,
is a small category D along with

1. an object D(-,. ) of C, called the hom-object of the ordered pair (-,. ) of objects
of D,

2. a morphism ◦-./ : D(., /) ⊗ D(-,. ) → D(-, /) of C, called the composition
morphism, for any ordered triple (-,., /) of objects of D,

3. a morphism 9- : 1→ D(-, -) of C, called the identity element, for any object -
of D,
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such that for all -,., /,, objects of D, the following diagrams commute
(D(/,,) ⊗ D(., /)) ⊗ D(-,. )

D(/,,) ⊗ (D(., /) ⊗ D(-,. )) D(.,,) ⊗ D(-,. )

D(/,,) ⊗ D(-, /) D(-,,)

1 ⊗ D(-,. ) D(-,. ) ⊗ 1

D(.,. ) ⊗ D(-,. ) D(-,. ) D(-,. ) ⊗ D(-, -)

◦. /, ⊗idD(-,. )

◦-. /

0D(/,, )D (. ,/ )D (-,. )

idD(/,, )⊗◦-. /

◦-/,

9. ⊗idD(-,. )

◦-..

_ d

◦--.

idD(-,. )⊗ 9-

where the first diagram exhibits the associativity of composition in D and the second
diagram exhibits the unitality of the composition in D.

Definition 6.3. The category of abelian groups Ab is the category whose objects are
abelian groups and morphisms are group homomorphisms of abelian categories. The
category of abelian groups is a prime example of a monoidal category. In fact, Ab is a
symmetric monoidal category, where symmetric signifies that for any two abelian groups
� and � there is a natural isomorphism between � ⊗ � and � ⊗ �.

Definition 6.4. Let C and D be two finitely complete categories. A functor � : C → D
is left exact if it preserves finite limits.

Dually, a functor � : C → D between two finitely cocomplete categories is called right
exact if it preserves finite colimits.

Definition 6.5. A pre-abelian category is a finitely bicomplete Ab-enriched category,
that is to say an Ab-enriched category that is finitely complete and finitely cocomplete
or equivalently has all finite limits and finite colimits.

Definition 6.6. An abelian category is a pre-abelian category such that the following
equivalent conditions are satisfied:

1. for any morphism 5 , the canonical morphism coker(ker( 5 )) → ker(coker( 5 )) is an
isomorphism,

2. every monomorphism can be exhibited as the kernel of a morphism and every
epimorphism can be exhibited as the cokernel of a morphism.

Remark. One of the main advantages of working with abelian categories is that any
morphism 5 : - → . factors through its own image, that is to say we can factor 5 as
- → im( 5 ) → . , such that this factorization consists of an epimorphism followed by a
monomorphism and this factorization is unique up to a unique isomorphism.

Proposition 6.7. Let C be an abelian category and 0 → - → . → / → 0 an exact
sequence in C. A functor � : C → D, with D an abelian category, is

� left exact if and only if it preserves direct sums and kernels,

� right exact if and only if it preserves direct sums and cokernels.
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Moreover,

� if � is left exact, then

0→ � (-) → � (. ) → � (/)

is an exact sequence in D,

� if ' is right exact, then

� (-) → � (. ) → � (/) → 0

is an exact sequence in D,

� if � is exact, then

0→ � (-) → � (. ) → � (/) → 0

is an exact sequence in D and � preserves chain homology.

Definition 6.8. A category C is said to be locally presentable if

1. C is a locally small category,

2. C is cocomplete,

3. there exists a regular cardinal U and a proper set ( consisting of objects of C, which
are all U-small and generate C under U-filtered colimits,

4. all objects of C are small.

Definition 6.9. An additive category is an Ab-enriched category that admits finite
coproducts.

Definition 6.10. A strict 2-category C consists of

� a collection of objects,

� for any pair of objects -,. ∈ C, a category homC (-,. ),whose objects are called
1-morphisms from - to . and whose morphisms are given by 2-morphisms between
1-morphisms, that is for 5 , 6 : - → . two 1-morphisms, a 2-morphism is a map
5 ⇒ 6,

� for any triple of objects -,., / ∈ C, a composition functor

◦ : homC (., /) × homC (-,. ) → homC (-, /),

� for every object - ∈ C, an identity 1-morphism id- ∈ HomC (-, -),

such that the following conditions are satisfied:

1. for any object - ∈ C, the identity 1-morphism id- is a unit for right and left
composition, that is to say that the following two functors are equal to the identity

homC (-,. ) → homC (-,. ) 5 ↦→ 5 ◦ id- ,

homC (., -) → homC (., -) 6 ↦→ id- ◦ 6,
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2. the composition law of C is associative, that is to say that for -,., /,, ∈ C, the
following diagram commutes

homC (., /) × homC (-,. ) × homC (,, -) homC (., /) × homC (,,. )

homC (-, /) × homC (,, -) homC (,, /)

id×◦

◦◦×id

◦

The composition of two 2-morphisms U : 5 ⇒ 6, V : 6 ⇒ ℎ, where 5 , 6, ℎ : - → .

for some -,. ∈ C is the composition V ◦ U : 5 ⇒ ℎ is called the vertical composition
of 2-morphisms and the composition of two 2-morphisms U : 5 ⇒ 6, V : ℎ ⇒ : where
5 , 6 : - → . and ℎ, : : . → /, via the composition functor ◦, is called the horizontal

composition of 2-morphisms.

Definition 6.11. We define the strict 2-category of small categories Cat as consisting of

� small categories as objects,

� functors between small categories as 1-morphisms,

� natural transformations between functors as 2-morphisms.

The vertical composition of 2-morphisms is given by the obvious composition of the
components of natural transformations and the horizontal composition is given by the
Godement product, that is given two natural transformations U : �1 → �1 : C1 → C2
and V : �2 → �2 : C2 → C3, where �1, �1 are functors from the category C1 to the
category C2 and �2, �2 are functors from the category C2 to the category C3, their
Godement product V ◦U : �2 ◦ �1 → �2 ◦�1 : C1 → C3 is again a natural transformation
and can be fully defined by its component maps. Let - ∈ C1, then we define the
component map of the natural transformation (V ◦U)- := V�1 (-) ◦ �2(U-) or equivalently
(V ◦ U)- := �2(U-) ◦ V�1 (-).
Definition 6.12. Suppose C is a category that has pullbacks. We say that D is a
category internal to C if it consists of

� an object of objects D0 ∈ C,

� an object of morphisms D1 ∈ C,

� a source and a target morphism B, C : D1 → D0,

� a morphism that assigns the identity to each object 4 : D0 → D1,

� a morphism that allows for composition 2 : D1 ×D0 D1 → D1,

such that we have the following commutative diagrams

D0 D1 D0 D1

D0 D0

D1 ×D0 D1 D1 D1 ×D0 D1 D1

D1 D0 D1 D0

4

idD0
B

4

idD0
C

2

?1

B

B ?2

2

C

C
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D1 ×D0 D1 ×D0 D1 D1 ×D0 D1

D1 ×D0 D1 D1

2

(2,idD1 )◦((?1,?2),?3)

2

(idD1 ,2)◦(?1,(?2,?3))

D0 ×D0 D1 D1 ×D0 D1 D1 ×D0 D0

D1

4×D0 idD1 idD1×D04

2
?2 ?1

where D1 ×D0 D1 is the pullback of B and C and D0 ×D0 D1 is the pullback of idD0 and C
and D1 ×D0 D0 is the pullback of B and idD0 .

Definition 6.13. A double category D is an internal category in the 2-category of small
categories Cat.

Definition 6.14. Let C be a locally small category. The Yoneda embedding is the
functor ℎ : C → Func(Cop, Set) defined by ℎ(/) := HomC (−, /) for any object /

of C and by mapping any morphism 5 : - → . of C to the morphism ℎ( 5 ) :=
HomC (−, -) → HomC (−, . ), which is defined by composition with 5 , that is to say
the natural transformation HomC (−, -) → HomC (−, . ) is defined component wise by
ℎ( 5 )/ = HomC (/, -) → HomC (/,. ) by ℎ( 5 )/ (6) = 5 ◦ 6 for any 6 : / → -, for any
object / of C.

Lemma 6.15 (Yoneda Lemma). Let C be a locally small category. For any functor
� ∈ Func(Cop, Set), there exists a canonical isomorphism

HomFunc(Cop,Set) (ℎ(. ), �) ' � (. ),

where ℎ is the Yoneda embedding and . any object of C.

Remark. The Yoneda lemma is one of the most fundamental results in category theory.
As such, proofs can be found in various references for category theory, such as [5] or [14].

§6.2 Simplicial sets

We will provide basic definitions and basic results concerning simplicial sets, since
simplicial sets come up occasionally in this thesis. When it comes to references for
simplicial sets, we highly recommend [15] and [5].

Definition 6.16. The simplex category Δ is the category whose

� objects are linearly ordered sets of the form [=] := {0, 1, . . . , =} for = ≥ 0,

� morphisms are given by nondecreasing functions.

Definition 6.17. Let C be a category. A simplicial object of C is a functor Δop → C.
Dually, a cosimplicial object of C is a functor Δ→ C.

Equivalently, we can define a simplicial object of a category C as a C-valued presheaf
over the simplex category Δ.
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Definition 6.18. A simplicial set is a simplicial object of Set, that is to say a presheaf
over the simplex category Δ.

A simplicial set - : Δop → Set maps [=] to a set - ( [=]), for each = ≥ 0. We call
elements of - ( [=]) the =-simplices of -.

Definition 6.19. The category of simplicial sets SSet is defined as the functor category
Fun(Δop, Set).
Definition 6.20. Let = ≥ 0. The standard =-simplex is the simplicial set given by

( [<] ∈ Δ) ↦→ HomΔ( [<], [=])
Remark. Suppose ( : Δop → Set is a simplicial set. We will indicate that ( is a simplicial
set by denoting it by (• and define (= := (( [=]), that is (= is the set of =-simplices of (•.

Proposition 6.21. The standard =-simplex Δ= is a simplicial set.

Proof. Let C be a category. Recall that HomC (−, -) : C → Set is a contravariant functor
for any object - ∈ C. Therefore Δ= is a presheaf over Δ and thus a simplicial set. �

Proposition 6.22. For every simplicial set -•, there is a bijection

HomSSet(Δ=, -•) ' -=.
Proof. Follows directly from the Yoneda Lemma 6.15. �

Remark. Proposition 6.22 allows us to identify =-simplices of any simplicial set -• with
maps of simplicial sets f : Δ= → -•.

In what follows, we introduce the face and degeneracy maps for simplicial sets. First,
we introduce two special types of maps in the simplex category. For any integer = ≥ 1
and 0 ≤ 8 ≤ =, we define i=

8
: [= − 1] → [=] by

i=8 (G) =
{
G if G < 8,

G + 1 if G ≥ 8.
and for any integer = ≥ 0 and 0 ≤ 8 ≤ =, we define k=

8
: [= + 1] → [=] by

k=8 (G) =
{
G if G ≤ 8,
G − 1 if G ≥ 8 + 1.

Since these maps are morphisms in the simplex category and we defined the =-simplex
Δ= as the functor ( [<] ↦→ HomΔ( [<], [=])), these maps induce maps m=

8
: Δ=−1 → Δ= and

l=
8

: Δ=+1 → Δ=.
Let -• be a simplicial set. As we remarked above, =-simplices of a simplicial set can

be identified with maps of simplicial sets Δ= → -•. Thus, we have -= ' HomSSet(Δ=, -•)
and the maps m=

8
and l=

8
induce maps HomSSet(Δ=+1, -•) → HomSSet(Δ=, -•) and

HomSSet(Δ=−1, -•) → HomSSet(Δ=, -•).
Definition 6.23. The face maps and degeneracy maps, with the former denoted by
B8= : -= → -=+1 for = ≥ 0 and 0 ≤ 8 ≤ = and the latter denoted by 38= : -= → -=−1 for
= ≥ 1 and 0 ≤ 8 ≤ =, are the maps induced by the maps l and m as described above.

Definition 6.24. Let = ≥ 0. The boundary of Δ= is defined as the simplicial set
mΔ= : Δop → Set by the formula

mΔ= ( [<]) = { 5 ∈ HomΔ( [<], [=]) : 5 is not surjective}.
Definition 6.25. The simplicial set Λ=

8
: Δ>? → Set given by the formula

(Λ=8 ) ( [<]) = { 5 ∈ HomΔ( [<], [=]) : [=] * 5 ( [<]) ∪ {8}},
is called the 8-th horn in Δ=.
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