
Test functions, mollifiers and convolution

Timo Rohner



The material presented in this document was motivated by the desire to have a rigurous proof for
a result that is a very useful tool and makes its appearance in mathematical literature frequently. One
such example is the notion of weak derivatives. In particular the result that will be developed throughout
this document is used to show that weak derivatives are unique, should they exist. The result that this
document sets out to prove can be stated as follows.

Theorem 1. Given an open set Ω ⊂ Rn and a function f ∈ L1
loc(Ω) we have that if

∫
Ω

fϕdx = 0 for all

ϕ ∈ C∞0 (Ω), then f = 0 almost everywhere in Ω.

Proving this theorem rigurously requires quite a bit of work. This document attempts to introduce
and develop everything needed for a complete proof. We first start out by introducing a relatively simple
function and highlighting some of its basic properties.

Lemma 2.

f(x) =

{
e−

1
x for x > 0,

0 for x ≤ 0,

is of C∞(R) regularity.

Proof. Step 1. We first show that for x > 0 the k-th derivative of f is of the following form.

f (k)(x) = P ( 1
x )f(x),

where P ( 1
x ) is a polynomial in 1

x .

For k = 0 and k = 1 this holds trivially, seeing as f (0)(x) = f(x) and f (1)(x) = 1
x2 e
− 1

x = 1
x2 f(x).

By hypothesis of induction, we suppose that for some k = 1, 2, ... f does indeed take the above form.
Computing the k + 1-th derivative of f yields

fk+1(x) = − 1
x2P

′( 1
x )f(x) + P ( 1

x )f ′(x)

= 1
x2

(
P ( 1

x )− P ′( 1
x )
)
f(x)

= Q( 1
x )f(x).

Since Q( 1
x ) = 1

x2

(
P ( 1

x )− P ′( 1
x )
)

is a polynomial in 1
x we move on to the next step.

Step 2. We now show that for any polynomial in 1
x , i.e. P ( 1

x ), we have

lim
x→0+

P ( 1
x )f(x) = 0.

Via series definition of the exponential, we can establish the following upper bound for f .

0 ≤ f(x) ≤ xnn!,

for any n = 0, 1, 2, ....
Given any polynomial in 1

x P ( 1
x ), any n bigger than the degree of P can be used to show that

lim
x→0+

P ( 1
x )f(x) = 0.

Step 3. As a final step we show that f (k)(0) = 0 for all k = 0, 1, 2, .... This is done via induction.
For k = 0 by definition this holds as f (0)(0) = f(0) = 0. Suppose now that f (k)(0) = 0 for some k ≥ 0.

By the definition of the derivative, we know that f (k+1)(0) = lim
t→0

f(k)(t)−f(k)(0)
t = lim

t→0

f(k)(t)
t . In the case

of t < 0 we trivially have the desired result of lim
t→0−

f(k)(t)
t = 0. For t > 0 it suffices to remark that

lim
t→0+

f(k)(t)
t = lim

t→0+
P ( 1

t )
1
t f(t). By virtue of P ( 1

t )
1
t being a polynomial in 1

t , the result established in

Step 2 allows us to directly conclude that lim
t→0+

f(k)(t)
t = 0, which concludes the proof.
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Lemma 3. There exists a function φ : Rn → R, for which the following holds true.

i) φ(x) ≥ 0 for all x ∈ Rn,

ii) φ ∈ C∞(Rn),

iii) supp φ = B1(0),

iv)
∫
Rn

φ dx = 1.

Proof. We define φ(x) by making use of the function f introduced in Lemma 2.

φ(x) := cnf(1− ‖x‖2),

where cn is a positive constant dependent only on n, meaning the dimension of Rn. ‖x‖2 is the standard
euclidian norm in Rn.

To show the first property it suffices to remark that f as defined in Lemma 2 is a positive function
over R and since cn is a positive constant we conclude that φ ≥ 0.

Proving C∞ regularity requires a bit more work. φ is a compound function of the polynomial 1−‖x‖2
and the function f , for which we established C∞ regularity in Lemma 2. It suffices to use standard
rules of differentiation, i.e. applying both the chain- and product-rule in multiple variables, to show the
continuity of each partial derivative of φ.

The third property is trivial to prove. We know that ∀x /∈ B1(0) 1−‖x‖2 < 0 and therefore f(x) = 0,
which implies x 6∈ supp φ.

Seeing as we have not made use of the constant cn in any way, we can set define cn such that the last
property holds.

Definition 4. A mollifier is a smooth function ϕ : Rn → R, i.e. ϕ ∈ C∞(Rn), if the following conditions
hold.

i) ϕ is of compact support,

ii)
∫
Rn

ϕ(x)dx = 1,

iii) lim
ε→0

ϕε(x) = lim
ε→0

ε−nϕ(xε ) = δ(x),

where δ(x) is the Dirac delta function and the limit taken in the schwartz space S(Rn).

Remark 1. i) The Schwartz space S(Rn) contains the space of all test functions C∞c (Rn),

ii) C∞c (Rn) is also referred to as the space of bump functions.

Definition 5. A mollifier ϕ is a

i) positive mollifier, if ϕ ≥ 0 in Rn,

ii) symmetric mollifier, if ϕ(x) = ψ(|x|), with ψ ∈ C∞(R+).

Lemma 6. The function φ, as defined in Lemma 3, is a symmetric and positive mollifier. Additionally
for any ε > 0 ∫

Rn

φε(x)dx = 1.
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Proof. φ being a mollifier follows directly from the definition of mollifiers and the properties established
for the function φ in Lemma 3. To show that

∫
Rn

φε(x)dx = 1 we use a change of variable y = x
ε in the

equality
∫
Rn

φ(x)dx = 1, which follows from Lemma 3.

Remark 2. The function φ as defined in Lemma 3 is considered the standard mollifier.

We now introduce the notion of convolution. We denote the convolution of two functions f and ϕ by
f ∗ ϕ and define it as follows.

(f ∗ ϕ)(x) :=

∫
Rn

f(x− y)ϕ(y)dy =

∫
Rn

f(y)ϕ(x− y)dy.

Lemma 7. If f ∈ L1
loc(Rn) and ψ ∈ Cc(Rn), then f ∗ ψ is continuous.

Proof. We prove this claim by showing that for any convergent sequence {xm} ⊂ Rn, xm → x ∈ Rn the
following holds.

lim
m→∞

(f ∗ ψ)(xm) = (f ∗ ψ)(x).

Before we attempt to prove this, please note that f ∈ L1
loc allows f to be redefined arbitrarily on any

set of measure 0 without changing f ∗ ψ. Therefore we may assume that f is defined everywhere.
Since xm converges to x, there exists R > 0 such that {xm} ⊂ BR(x). Let r > 0 such that suppψ ⊂

Br(0). By continuity of ψ, we have for all y

f(y)ψ(xm − y)→ f(y)ψ(x− y).

On top of that for any y such that ‖y−x‖ > R+r we have ‖y−xm‖ ≥ ‖y−x‖−‖x−xm‖ > r+R−R = r,
which means that y 6∈ suppψ and therefore ψ(xm − y) = 0. This allows us to establish the following
bound

|f(y)ψ(xm − y)| ≤ sup(|ψ|)|f(y)|X
Br+R(x)

(y)

By the dominated convergence theorem we can integrate, since the function on the righthand side is
integrable.

lim
m→∞

(f ∗ ψ)(xm) = lim
m→∞

∫
Rn

f(y)ψ(xm − y)dy

=

∫
Rn

lim
m→∞

f(y)ψ(xm − y)dy

=

∫
Rn

f(y)ψ(x− y)dy

= (f ∗ ψ)(x).

Lemma 8. Given a function f ∈ L1
loc(Rn) and a function ψ ∈ C∞c (Rn), the following holds

∂(f ∗ ψ)

∂xi
(x) = (f ∗ ∂ψ

∂xi
)(x),

for any i = 1, 2, ....
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Proof. For some i we compute the following

∂(f ∗ ψ)

∂xi
(x) = lim

t→0

1
t

(
(f ∗ ψ)(x+ t · ei)− (f ∗ ψ)(x)

)
= lim
t→0

1
t

( ∫
Rn

f(y)ψ(x+ t · ei)dy −
∫
Rn

f(y)ψ(x− y)dy
)

= lim
t→0

∫
Rn

f(y)
(ψ(x+t·ei)−ψ(x−y)

t

)
dy.

The mean value theorem gives us s(t) such that |s(t)| ≤ |t| and ∂ψ
∂xi

(x−y+s(t) ·ei) = ψ(x+t·ei)−ψ(x−y)
t .

Therefore we have
∂(f∗ψ)
∂xi

(x) = lim
t→0

∫
Rn

f(y)
(ψ(x+t·ei)−ψ(x−y)

t

)
dy

= lim
t→0

∫
Rn

f(y) ∂ψ∂xi
(x− y + s(t) · ei)dy

= lim
t→0

(
f ∗ ∂ψ

∂xi

)(
x+ s(t) · ei

)
= (f ∗ ∂ψ

∂xi
)(x),

with the last equality being a consequence of Lemma 7.

Theorem 9. If f ∈ L1
loc(Rn) and ψ ∈ C∞c (Rn), then (f ∗ ψ) ∈ C∞(Rn).

Proof. Using Lemma 8 we compute ∂(f∗ψ)
∂xi

(x) = (f ∗ ∂ψ∂xi
)(x). Since ∂ψ

∂xi
is Cc(Rn) we can apply Lemma 7

and therefore we have that ∂(f∗ψ)
∂xi

is continuous.
Higher-order derivatives are continuous as well, which follows from repeating the above procedure.

Lemma 10. For any function f ∈ L1
loc(Rn), we have

supp(f ∗ φε) ⊂ suppf +Bε(0) == {x+ y | x ∈ supp(f), y ∈ Bε(0)},

where φ is the standard mollifier.

Proof.

fε(x) =

∫
Rn

f(x− y)φε(y)dy =

∫
Bε(0)

f(x− y)φε(y)dy.

Suppose that for some x, we have fε(x) = 0. Then f(x− y) cannot be identically 0 for all y ∈ Bε(0).
Therefore there exists at least one such y, for which x − y ∈ supp(f) and thus x = (x − y) + y ∈
supp(f) +Bε(0).

Theorem 11. For any function f ∈ C(Rn)

fε = f ∗ φε → f,

converges uniformly on all compact subsets of Rn, where φε is the standard mollifier.
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Proof. Let K ⊂⊂ Rn, i.e. K is a compact subset of Rn. By compactness, there exists some r > 0 such
that K ⊂ Br(0). Additionally since f is continuous, f is also absolutely continuous on the compact set
Br+1(0). Therefore for any α > 0, there exists δ such that |x− y| < δ implies |f(x)− f(y)| < α.

For any x ∈ K ⊂ Br(0) and ε ∈ (0, 1) ∩ (0, δ) we find that the following holds.

|fε(x)− f(x)| =
∣∣∣ ∫
Rn

f(x− y)φε(y)dy − f(x)
∣∣∣

=
∣∣∣ ∫
Rn

f(x− y)φε(y)dy −
∫
Rn

f(x)φε(y)dy
∣∣∣

≤
∫
Rn

|f(x− y)− f(x)|φε(y)dy

=

∫
Bε(0)

|f(x− y)− f(x)|φε(y)dy

<

∫
Bε(0)

αφε(y)dy = α,

where the last line follows from x ∈ Br(0) ⊂ Br+1(0) and x − y ∈ Br(0) + Bε(0) ⊂ Br+1(0). Since this
inequality holds for any x ∈ K we have that fε → f uniformly on K. And since K is any compact subset
of Rn this completes the proof.

Theorem 12. For any 1 ≤ p <∞, C∞c (Rn) is dense in Lp(Rn).

Proof. As a starting point in this proof we assume that the fact that Cc(Rn) is dense in Lp(Rn) is known.
For further details and a detailed proof of this fact please consult [1], specifically theorem 3.14.

Let f ∈ L1(Rn). By density of Cc(Rn) in Lp(Rn) we know that there exists a function g ∈ Cc(Rn)
such that ‖f − g‖Lp(Rn) ≤ δ

2 for any δ > 0.
Now we take the convolution gε, which converges uniformly to g as ε → 0 thanks to Theorem 11.

Since g is of compact support, there exists r > 0 such that supp(g) ⊂ Br(0) and by Lemma 10 we have
supp(gε) ⊂ supp(g) +Bε(0) ⊂ Br(0) +Bε(0) = Br+ε(0).

Simple computation gives us the following upper bound

‖gε − g‖pLp(Rn) =

∫
Rn

|gε(x)− g(x)|pdx =

∫
Br+ε(0)

|gε(x)− g(x)|pdx ≤ |Br+ε(0)| sup
x∈Br+ε(0)

|gε(x)− g(x)|p.

Since gε → g uniformly as ε→ 0 we also know that sup|gε − g|p → 0 as ε→ 0. Therefore there exists
α > 0 such that for all ε < α we have ‖gε − g‖pLp(Rn) <

δ
2 and this yields

‖f − gε‖Lp(Rn) ≤ ‖f − g‖Lp(Rn) + ‖g − gε‖Lp(Rn) < δ.

gε is of C∞ regularity by Theorem 9 and of compact support since supp(gε) ⊂ supp(g) + Bε(x).
Therefore gε ∈ C∞c (Rn) and thus C∞c (Rn) is dense in Lp(Rn), which completes the proof.

Theorem 13. For any function f ∈ Lp(Rn) with 1 ≤ p <∞ we have ‖f ∗ φε − f‖Lp(Rn) → 0 as ε→ 0
where φε is the standar mollifier.
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Proof. We have

|(f ∗ φε)(x)− f(x)| ≤
∫
Rn

|f(x− y)− f(x)|φε(y)dy.

Using Jensen’s inequality for the convex function t 7→ tp yields

|(f ∗ φε)(x)− f(x)|p ≤
(∫
Rn

|f(x− y)− f(x)|φε(y)dy
)p

≤
∫
Rn

|f(x− y)− f(x)|pφε(y)dy.

Integrating over Rn in x and applying Fubini’s theorem shows the following.

‖f ∗ φε − f‖pp ≤
∫
Rn

∫
Rn

|f(x− y)− f(x)|pφε(y)dydx

=

∫
Rn

∫
Rn

|f(x− y)− f(x)|pdxφε(y)dy

=

∫
Rn

‖fy − f‖ppφε(y)dy,

where fy(x) = f(x − y). We now show that the function g(y) = ‖fy − f‖pp is continuous and bounded
and g(0) = 0. g(0) = 0 is trivial and g being bounded follows directly from

g(y) = ‖fy − f‖pp ≤ (‖fy‖p + ‖f‖p)p = (2‖f‖p)p.

To show that g is continuous we proceed as follows: As previously established, we can find a continuous
function h with compact support such that ‖f − h‖Lp(Rn) <

δ
3 . Since h is continuous and of compact

support we can find r > 0 such that supp(h) ⊂ Br(0) and h is uniformly continuous on Br(0). Thus there

exists α ∈ (0, r) such that for |s− t| < α we have |h(s)−h(t)| < |B2r(0)|−
1
p δ

3 . We define hs(x) = h(x−s)
and ht(x) = h(x− t) and compute for any s and t such that |s− t| < α

‖hs − ht‖pLp(Rn) =

∫
Rn

|h(x− s)− h(x− t)|pdx < 1

|B2r(0)|
δp|Br+α(s)| <

(δ
3

)p
.

For all s, t such that |s− t| < α,

‖fs − f t‖Lp(Rn) ≤ ‖fs − hs‖Lp(Rn) + ‖hs − ht‖Lp(Rn) + ‖ht − f t‖Lp(Rn)

= ‖(f − h)s‖Lp(Rn) + ‖hs − ht‖Lp(Rn) + ‖(h− f)t‖Lp(Rn)

= ‖f − h‖Lp(Rn) + ‖hs − ht‖Lp(Rn + ‖g − f‖Lp(Rn

< δ.

Therefore we have that the function g(y) is continuous.
Having established boundedness and continuity of g(y) we proceed by computing as follows
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‖f ∗ φε − f‖pLp(Rn) ≤
∫
Rn

g(y)φε(y)dy

=

∫
Rng(y)ε−nφ(

y

ε
)dy,

=

∫
Rn

g(εs)φ(s)ds,

where the last line follows a simple change of variable s = yε−1.
As ε → 0 we have g(εs)φ(s) → g(0)φ(s) = 0 pointwise on Rn. Moreover we can establish the upper

bound g(εs)φ(s) ≤ sup(g)φ(s) for all ε. Since g is bounded and φ integrable we can use the Dominated
Convergence Theorem to finish off the proof by showing that

lim
ε→0

∫
Rn

g(ε)φ(s)ds = 0.

This implies that ‖f ∗ φε − f‖Lp(Rn) → 0 as ε→ 0 and thus completes the proof.

Remark 3. Theorem 13 also holds for any function φε that is nonnegative, measurable on Rn and of total
integral one.

Theorem 14. If Ω is an open set in Rn and K a compact subset of Ω, then there exists a function
ψ ∈ C∞c (Ω) with 0 ≤ ψ ≤ 1 such that ψ = 1 in a neighborhood of K.

Proof. Let ε > 0 be sufficiently small such that ‖x − y‖ ≥ 4ε for all x ∈ K and y ∈ ∂Ω. Let v be the
characteristic function of K2ε = {y ∈ Ω | ‖x− y‖ ≤ 2ε }. Now we define the function ψ as follows

ψ = v ∗ φε ∈ C∞c (K3ε).

C∞ regularity of ψ follows from Theorem 9 and compactness follows from Lemma 10 since supp(ψ) ⊂
supp(v) +Bε(0) ⊂ K3ε.

To finish the proof we just show that 1− ψ = (1− v)φε vanishes in Kε, which follows directly

supp(1− ψ) ⊂ supp(1− v) +Bε = Ω\K2ε +Bε = Ω\Kε.

We are now ready to show the theorem that motivated the creation of this document. We recall the
theorem and then proceed to prove it

Theorem 15. Given an open set Ω ⊂ Rn and a function f ∈ L1
loc(Ω) we have that if

∫
Ω

fϕdx = 0 for all

ϕ ∈ C∞0 (Ω), then f = 0 almost everywhere in Ω.

Proof. Let K ⊂⊂ Ω be a compact subser of Ω. By Theorem 14 we know that there exists a function
ψ ∈ C∞c (Ω) such that ψ = 1 on a neighbourhood of K.

Let fψ = fψ, which means that fψ ∈ L1(Rn), since f is L1
loc(Ω) and ψ ∈ C∞c (Ω). Take any mollifier,

such as the standard mollifier φ ∈ C∞c (Rn).
For a fixed x we have y 7→ ψ(y)φε(x− y) is of C∞c (Ω) regularity and thus by hypothesis on f we have

for any x ∈ Rn

(φε ∗ fψ)(x) =

∫
Ω

f(y)ψ(y)φε(x− y)dy = 0. (1)
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By Theorem 13 we know that
φε ∗ fψ → fψ in L1(Rn). (2)

Combining 1 and 2 we can conclude that

lim
ε→0

(φε ∗ fψ)(x) = fψ(x) = 0 a.e. in Rn.

Since fψ(x) = f(x)ψ(x) = f(x) on K since ψ(x) = 1 on K we conclude that

f(x) = 0 a.e. on K,

where K is any compact subset of Ω and thus we have f = 0 a.e. in Ω, which concludes the proof.
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